Skip to main content

Advertisement

Log in

Prenatal imaging of the normal and abnormal spinal cord: recommendations from the Fetal Task Force of the European Society of Paediatric Radiology (ESPR) and the European Society of Neuroradiology (ESNR) Pediatric Neuroradiology Committee

  • ESPR Belgrade 2023 - Postgraduate Course and Taskforce Lectures
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Spinal dysraphisms are amenable to diagnosis in utero. The prognosis and the neonatal management of these conditions differ significantly depending on their types, mainly on the distinction between open and closed defects. A detailed evaluation not only of the fetal spine, but also of the brain, skull, and lower limbs is essential in allowing for the right diagnosis. In this article, recommendations from the Fetal Task Force of the European Society of Paediatric Radiology (ESPR) and the European Society of Neuroradiology (ESNR) Pediatric Neuroradiology Committee will be presented. The aim of this paper is to review the imaging features of the normal and abnormal fetal spinal cord, to clarify the prenatal classification of congenital spinal cord anomalies and to provide guidance in their reporting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Salomon LJ, Alfirevic Z, Berghella V et al (2022) ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 59:840–856

    Article  CAS  PubMed  Google Scholar 

  2. Rees MA, Squires JH, Coley BD et al (2021) Ultrasound of congenital spine anomalies. Pediatr Radiol 51:2442–2457

    Article  PubMed  Google Scholar 

  3. Beek FJ, de Vries LS, Gerards LJ et al (1996) Sonographic determination of the position of the conus medullaris in premature and term infants. Neuroradiology 38(Suppl 1):S174-177

    Article  PubMed  Google Scholar 

  4. Zalel Y, Lehavi O, Aizenstein O et al (2006) Development of the fetal spinal cord: time of ascendance of the normal conus medullaris as detected by sonography. J Ultrasound Med 25:1397–1401 (quiz 1402-1393)

    Article  PubMed  Google Scholar 

  5. Inarejos Clemente EJ, Navallas Irujo M, Navarro OM et al (2023) US of the spine in neonates and infants: a practical guide. Radiographics 43:e220136

    Article  PubMed  Google Scholar 

  6. Shin HJ, Kim MJ, Lee HS et al (2015) Optimal filum terminale thickness cutoff value on sonography for lipoma screening in young children. J Ultrasound Med 34:1943–1949

    Article  PubMed  Google Scholar 

  7. Colleran GC, Kyncl M, Garel C et al (2022) Fetal magnetic resonance imaging at 3 Tesla - the European experience. Pediatr Radiol 52:959–970

    Article  PubMed  Google Scholar 

  8. Machado-Rivas F, Cortes-Albornoz MC, Afacan O et al (2023) Fetal MRI at 3 T: principles to optimize success. Radiographics 43:e220141

    Article  PubMed  Google Scholar 

  9. Griffiths PD, Widjaja E, Paley MN et al (2006) Imaging the fetal spine using in utero MR: diagnostic accuracy and impact on management. Pediatr Radiol 36:927–933

    Article  PubMed  Google Scholar 

  10. Coblentz AC, Teixeira SR, Mirsky DM et al (2020) How to read a fetal magnetic resonance image 101. Pediatr Radiol 50:1810–1829

    Article  PubMed  Google Scholar 

  11. Blaaza M, Figueira CFC, Ramali MR et al (2023) Assessment of the levels of termination of the conus medullaris and thecal sac in the pediatric population. Neuroradiology 65:835–843

    Article  PubMed  PubMed Central  Google Scholar 

  12. Simon EM (2004) MRI of the fetal spine. Pediatr Radiol 34:712–719

    Article  PubMed  Google Scholar 

  13. Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol 88:20140496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Avagliano L, Massa V, George TM et al (2019) Overview on neural tube defects: from development to physical characteristics. Birth Defects Res 111:1455–1467

    Article  CAS  PubMed  Google Scholar 

  15. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vande Perre S, Guilbaud L, de Saint-Denis T et al (2021) The myelic limited dorsal malformation: prenatal ultrasonographic characteristics of an intermediate form of dysraphism. Fetal Diagn Ther 48:690–700

    Article  PubMed  Google Scholar 

  17. Nagaraj UD, Bierbrauer KS, Peiro JL et al (2016) Differentiating closed versus open spinal dysraphisms on fetal MRI. AJR Am J Roentgenol 207:1316–1323

    Article  PubMed  Google Scholar 

  18. Muller F (2003) Prenatal biochemical screening for neural tube defects. Childs Nerv Syst 19:433–435

    Article  PubMed  Google Scholar 

  19. Ghi T, Pilu G, Falco P et al (2006) Prenatal diagnosis of open and closed spina bifida. Ultrasound Obstet Gynecol 28:899–903

    Article  CAS  PubMed  Google Scholar 

  20. Nicolaides KH, Campbell S, Gabbe SG et al (1986) Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet 2:72–74

    Article  CAS  PubMed  Google Scholar 

  21. Nagaraj UD, Bierbrauer KS, Zhang B et al (2017) Hindbrain herniation in Chiari II malformation on fetal and postnatal MRI. AJNR Am J Neuroradiol 38:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagaraj UD, Kline-Fath BM (2020) Imaging of open spinal dysraphisms in the era of prenatal surgery. Pediatr Radiol 50:1988–1998

    Article  PubMed  Google Scholar 

  23. Maurice P, Garel J, Garel C et al (2021) New insights in cerebral findings associated with fetal myelomeningocele: a retrospective cohort study in a single tertiary centre. BJOG 128:376–383

    Article  CAS  PubMed  Google Scholar 

  24. Nagaraj UD, Peiro JL, Bierbrauer KS et al (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Jong-Pleij EA, Ribbert LS, Tromp E et al (2010) Three-dimensional multiplanar ultrasound is a valuable tool in the study of the fetal profile in the second trimester of pregnancy. Ultrasound Obstet Gynecol 35:195–200

    Article  PubMed  Google Scholar 

  26. Carreras E, Maroto A, Illescas T et al (2016) Prenatal ultrasound evaluation of segmental level of neurological lesion in fetuses with myelomeningocele: development of a new technique. Ultrasound Obstet Gynecol 47:162–167

    Article  CAS  PubMed  Google Scholar 

  27. Corroenne R, Yepez M, Pyarali M et al (2021) Prenatal predictors of motor function in children with open spina bifida: a retrospective cohort study. BJOG 128:384–391

    Article  CAS  PubMed  Google Scholar 

  28. Jans L, Vlummens P, Van Damme S et al (2008) Hemimyelomeningocele: a rare and complex spinal dysraphism. JBR-BTR 91:198–199

    CAS  PubMed  Google Scholar 

  29. Pang D, Zovickian J, Oviedo A et al (2010) Limited dorsal myeloschisis: a distinctive clinicopathological entity. Neurosurgery 67:1555–1579 (discussion 1579-1580)

    Article  PubMed  Google Scholar 

  30. Friszer S, Dhombres F, Morel B et al (2017) Limited dorsal myeloschisis: a diagnostic pitfall in the prenatal ultrasound of fetal dysraphism. Fetal Diagn Ther 41:136–144

    Article  PubMed  Google Scholar 

  31. Pang D, Zovickian J, Wong ST et al (2013) Limited dorsal myeloschisis: a not-so-rare form of primary neurulation defect. Childs Nerv Syst 29:1459–1484

    Article  PubMed  Google Scholar 

  32. Midrio P, Silberstein HJ, Bilaniuk LT et al (2002) Prenatal diagnosis of terminal myelocystocele in the fetal surgery era: case report. Neurosurgery 50:1152–1154. discussion 1154-1155

    PubMed  Google Scholar 

  33. Blondiaux E, Chougar L, Gelot A et al (2018) Developmental patterns of fetal fat and corresponding signal on T1-weighted magnetic resonance imaging. Pediatr Radiol 48:317–324

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliette Garel.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Sample report template for a fetal ultrasound imaging study when facing spinal dysraphism: the items to be reported

GESTATIONAL AGE: [..]

FETAL POSITION: [..]

BIOMETRY:

Biparietal diameter (BPD) (*)

Head circumference (HC)

Abdominal circumference (AC)

Femur diaphysis length (FL)

FINDINGS:

Brain and skull

Chiari II malformation (*)

Flattening of frontal bones

Ventricular dilatation (*)

Presence of sub-ependymal heterotopia (*)

Dysgenesis of the corpus callosum (*)

Spine

Superior level of the defect (the upper point at which the posterior arches are open)

Level of the conus medullaris (*)

Shape of the conus medullaris (*)

Visualisation of the neural placode (*)

Position of the neural placode (flush, inside or outside the spinal canal) (*)

Presence or absence of a sac (*)

Nerve roots inside the sac

Peripheral lining (thin or thick) (*)

Morphology of the vertebrae (normal, parallel or inverted)

The spinal curvature (*)

Spinal canal focal widening (*)

Abnormal echogenicity within the spinal canal

Appearance of the posterior soft tissues

Lower limbs

Position of the inferior limbs and feet

Muscular atrophy of the lower limbs

Movements of the lower limbs during the US

CONCLUSION: [..]

(*): Information that can be complemented by magnetic resonance imaging. US ultrasound

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garel, J., Rossi, A., Blondiaux, E. et al. Prenatal imaging of the normal and abnormal spinal cord: recommendations from the Fetal Task Force of the European Society of Paediatric Radiology (ESPR) and the European Society of Neuroradiology (ESNR) Pediatric Neuroradiology Committee. Pediatr Radiol 54, 548–561 (2024). https://doi.org/10.1007/s00247-023-05766-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05766-8

Keywords

Navigation