Skip to main content

Advertisement

Log in

Tolerability and efficacy of a reduced dose adenosine stress cardiac magnetic resonance protocol under general anesthesia in infants and children

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Intravenous adenosine induces pharmacological stress by causing vasodilatation and thus carries the risk of severe hypotension when combined with vasodilatory effects of anesthetic agents.

Objective

This study describes our experience with a reduced dose adenosine cardiac magnetic resonance imaging (MRI) protocol in young children under general anesthesia (GA).

Materials and methods

This is a retrospective report of all patients from birth to 18 years who underwent adenosine stress cardiac MRI under GA between August 2018 and November 2022. Based on our anecdotal experience of severe adverse effects in patients receiving adenosine infusion under GA and in discussion with the pediatric anesthesia team, we developed a modified protocol starting at a dose of 110 mcg/kg/min with incremental escalation to a full dose of 140 mcg/kg/min to achieve desired hemodynamic effect.

Results

Twenty-two children (mean age 6.5 years, mean weight 28 kg) satisfied the inclusion criteria. The diagnoses included Kawasaki disease (7), anomalous aortic origin of left coronary artery (3), anomalous aortic origin of right coronary artery (2), coronary fistula (3), repaired d-transposition of great arteries (2), repaired anomalous left coronary artery from pulmonary artery (2), repaired truncus arteriosus with left coronary artery occlusion (1), extracardiac-Fontan with left coronary artery myocardial bridge (1), and post heart transplantation (1). Nine patients needed dose escalation beyond 110 mcg/kg/min. Two patients had transient hypotension during testing (systemic blood pressure drop > 25 mmHg). No patient developed significant heart block or bronchospasm. Six patients (repeat study in one) demonstrated inducible perfusion defects (27%) on stress perfusion sequences—5 of whom had confirmed significant coronary abnormalities on angiography or direct surgical inspection.

Conclusion

A reduced/incremental dose adenosine stress cardiac MRI protocol under GA in children is safe and feasible. This avoids severe hypotension which is both unsafe and may result in inaccurate data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ntsinjana HN, Tann O, Hughes M et al (2017) Utility of adenosine stress perfusion CMR to assess paediatric coronary artery disease. Eur Heart J Cardiovasc Imaging 18:898–905

    Article  PubMed  Google Scholar 

  2. Patel AR, Salerno M, Kwong RY et al (2021) Stress cardiac magnetic resonance myocardial perfusion imaging. J Am Coll Cardiol 78:1655–1668

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwitter J, Wacker CM, Wilke N et al (2013) MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34:775–781

    Article  PubMed  Google Scholar 

  4. Biko DM, Collins RT, Partington SL et al (2018) Magnetic resonance myocardial perfusion imaging: safety and indications in pediatrics and young adults. Pediatr Cardiol 39:275–282

    Article  PubMed  Google Scholar 

  5. Hauser M, Bengel FM, Kühn A et al (2001) Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and ross operation. Circulation 103:1875–1880

    Article  CAS  PubMed  Google Scholar 

  6. Secinaro A, Ntsinjana H, Tann O et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mavrogeni S, Papadopoulos G, Douskou M et al (2004) Magnetic resonance angiography isequivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol 43:649–652

    Article  PubMed  Google Scholar 

  8. Duran SR, Huffaker T, Dixon B et al (2021) Feasibility and safety of quantitative adenosine stress perfusion cardiac magnetic resonance imaging in pediatric heart transplant patients with and without coronary allograft vasculopathy. Pediatr Radiol 51:1311–1321

    Article  PubMed  Google Scholar 

  9. Noel CV, Krishnamurthy R, Masand P et al (2018) Myocardial stress perfusion MRI: experience in pediatric and young-adult patients following arterial switch operation utilizing regadenoson. Pediatr Cardiol 39:1249–1257

    Article  PubMed  Google Scholar 

  10. Noel CV, Krishnamurthy R, Moffett B, Krishnamurthy R (2017) Myocardial stress perfusion magnetic resonance: initial experience in a pediatric and young adult population using regadenoson. Pediatr Radiol 47:280–289

    Article  PubMed  Google Scholar 

  11. Hernandez LE (2018) Myocardial stress perfusion magnetic resonance in children with hypertrophic cardiomyopathy. Cardiol Young 28:702–708

    Article  PubMed  Google Scholar 

  12. Patel SG, Husain N, Rigsby CK, Robinson JD (2022) Safety and efficacy of regadenoson for pediatric stress perfusion cardiac MRI with quantification of myocardial blood flow. Children 9:1332

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kramer CM, Barkhausen J, Bucciarelli-Ducci C et al (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22:17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dietz SM, Tacke CE, Kuipers IM et al (2015) Cardiovascular imaging in children and adults following Kawasaki disease. Insights Imaging 6:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vijarnsorn C, Noga M, Schantz D et al (2017) Stress perfusion magnetic resonance imaging to detect coronary artery lesions in children. Int J Cardiovasc Imaging 33:699–709

    Article  PubMed  Google Scholar 

  16. Fukunaga AF, Flacke WE, Bloor BC (1982) Hypotensive effects of adenosine and adenosine triphosphate compared with sodium nitroprusside. Anesth Analg 61:273–278

    Article  CAS  PubMed  Google Scholar 

  17. Bulley SR, Wittnich C (1995) Adenosine infusion: a rational approach towards induced hypotension. Can J Cardiol 11:327–334

    CAS  PubMed  Google Scholar 

  18. Manisty C, Ripley DP, Herrey AS et al (2015) Splenic switch-off: a tool to assess stress adequacy in adenosine perfusion cardiac MR imaging. Radiology 276:732–740

    Article  PubMed  Google Scholar 

  19. Ishida M, Schuster A, Morton G et al (2011) Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:28

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schulz-Menger J, Bluemke DA, Bremerich J et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance - 2020 update. J Cardiovasc Magn Reson 22:19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buechel ERV, Balmer C, Bauersfeld U et al (2009) Feasibility of perfusion cardiovascular magnetic resonance in paediatric patients. J Cardiovasc Magn Reson 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fredholm BB, IJzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical pharmacology. lxxxi. nomenclature and Classification of Adenosine Receptors—An Update. Pharmacol Rev 63:1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwamoto T, Umemura S, Toya Y et al (1994) Identification of adenosine A2 receptor-cAMP system in human aortic endothelial cells. Biochem Biophys Res Commun 199:905–910

    Article  CAS  PubMed  Google Scholar 

  24. Maimon N, Titus PA, Sarelius IH (2014) Pre-exposure to adenosine, acting via A2A receptors on endothelial cells, alters the protein kinase A dependence of adenosine-induced dilation in skeletal muscle resistance arterioles. J Physiol 592:2575–2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teng B, Fil D, Tilley SL et al (2013) Functional and RNA expression profile of adenosine receptor subtypes in mouse mesenteric arteries. J Cardiovasc Pharmacol 61:70–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ansari HR, Nadeem A, Talukder MAH et al (2007) Evidence for the involvement of nitric oxide in A2B receptor-mediated vasorelaxation of mouse aorta. Am J Physiol-Heart Circ Physiol 292:H719–H725

    Article  CAS  PubMed  Google Scholar 

  27. Pijls NHJ, Tonino PAL (2011) The crux of maximum hyperemia. JACC: Cardiovasc Interv 4:1093–1095. https://doi.org/10.1016/j.jcin.2011.08.007

    Article  PubMed  Google Scholar 

  28. Cerqueira MD, Verani MS, Schwaiger M et al (1994) Safety profile of adenosine stress perfusion imaging: results from the adenoscan multicenter trial registry. J Am Coll Cardiol 23:384–389

    Article  CAS  PubMed  Google Scholar 

  29. Bernhardt P, Steffens M, Kleinertz K et al (2006) Safety of adenosine stress magnetic resonance imaging using a mobile cardiac magnetic resonance system. J Cardiovasc Magn Reson 8:475–478

    Article  PubMed  Google Scholar 

  30. Prabhu AS, Singh TP, Morrow WR et al (1999) Safety and efficacy of intravenous adenosine for pharmacologic stress testing in children with aortic valve disease or Kawasaki disease. Am J Cardiol 83:284–286

    Article  CAS  PubMed  Google Scholar 

  31. Wilkinson JC, Doan TT, Loar RW et al (2019) Myocardial stress perfusion MRI using regadenoson: a weight-based approach in infants and young children. Radiol Cardiothorac Imaging 1:e190061. https://doi.org/10.1148/ryct.2019190061

    Article  PubMed  PubMed Central  Google Scholar 

  32. Monmeneu Menadas JV, García Gonzalez MP, Lopez-Lereu MP et al (2022) Safety and tolerability of regadenoson in comparison with adenosine stress cardiovascular magnetic resonance: data from a multicentre prospective registry. Int J Cardiovasc Imaging 38:195–209

    Article  PubMed  Google Scholar 

  33. Sollevi A, Lagerkranser M, Irestedt L et al (1984) Controlled hypotension with adenosine in cerebral aneurysm surgery. Anesthesiology 61:400–405

    Article  CAS  PubMed  Google Scholar 

  34. Öwall A, Gordon E, Lagerkranser M et al (1987) Clinical experience with adenosine for controlled hypotension during cerebral aneurysm surgery. Anesth Analg 66:229

    PubMed  Google Scholar 

  35. Raj V, Pudhiavan A, Hrishikesh V et al (2020) Safety profile of adenosine stress cardiac MRI in a tertiary hospital in India. Indian J Radiol Imaging 30:459–464

    Article  PubMed  Google Scholar 

  36. Fares M, Critser PJ, Arruda MJ et al (2019) Pharmacologic stress cardiovascular magnetic resonance in the pediatric population: a review of the literature, proposed protocol, and two examples in patients with Kawasaki disease. Congenit Heart Dis 14:1166–1175

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MG collated and analyzed the data, and drafted the initial manuscript.

TH conceived, supervised, and supported the study.

MF interpreted the images and helped with the manuscript.

BS collated and analyzed the data.

PD, MN, SD, RS, JD and GG helped revise and improve the manuscript.

All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Madhusudan Ganigara.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganigara, M., Sharma, B., Doctor, P. et al. Tolerability and efficacy of a reduced dose adenosine stress cardiac magnetic resonance protocol under general anesthesia in infants and children. Pediatr Radiol 53, 2188–2196 (2023). https://doi.org/10.1007/s00247-023-05738-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05738-y

Keywords

Navigation