Skip to main content

Advertisement

Log in

Assessment of lung ventilation of premature infants with bronchopulmonary dysplasia at 1.5 Tesla using phase-resolved functional lung magnetic resonance imaging

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The most common chronic complication of preterm birth is bronchopulmonary dysplasia (BPD), widely referred to as chronic lung disease of prematurity. All current definitions rely on characterizing the disease based on respiratory support level and do not provide full understanding of the underlying cardiopulmonary pathophysiology.

Objective

To evaluate a rapid functional lung imaging technique in premature infants and to quantitate pulmonary ventilation using 1.5 Tesla magnetic resonance imaging (MRI).

Materials and methods

We conducted a prospective MRI study of 12 premature infants in the neonatal intensive care unit (NICU) using the phase resolved functional lung MRI technique to calculate pulmonary ventilation parameters in preterm infants with and without BPD grade 0/1 (n = 6) and grade 2/3 (n = 6).

Results

The total ventilation defect percentage showed a significant difference between groups (16.0% IQR (11.0%,18%) BPD grade 2/3 vs. 8.0% IQR (4.5%,9.0%) BPD grade 0/1, p = 0.01).

Conclusion

Phase-resolved functional lung MRI is feasible for assessment of ventilation defect percentages in preterm infants and shows regional variation in localized lung function in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Stoll BJ, Hansen NI, Bell EF et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314:1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respiratory therapy of hyaline-membrane disease, bronchopulmonary dysplasia. N Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  3. Jensen EA, Schmidt B (2014) Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A 100:145–157

    Article  CAS  Google Scholar 

  4. Jensen EA, Edwards EM, Greenberg LT et al (2021) Severity of bronchopulmonary dysplasia among very preterm infants in the United States. Pediatrics 148:1–8

    Article  Google Scholar 

  5. Doershuk CF, Matthews LW (1969) Airway resistance and lung volume in the newborn infant. Pediat Res 3:128–134

    Article  CAS  PubMed  Google Scholar 

  6. Higgins RD, Jobe AH, Koso-Thomas M et al (2018) Bronchopulmonary dysplasia: Executive summary of a workshop. J Pediatr 197:300–308

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies G (2020) Does newborn screening improve early lung function in cystic fibrosis? Paediatr Respir Rev S1526–0542:30121–30124

    Google Scholar 

  8. Shepherd EG, Clouse BJ, Hasenstab KA et al (2018) Infant pulmonary function testing and phenotypes in severe bronchopulmonary dysplasia. Pediatrics 141:e20173350

    Article  PubMed  Google Scholar 

  9. Hayes D Jr, Feola DJ, Murphy BS et al (2010) Pathogenesis of bronchopulmonary dysplasia. Respiration 79:425–436

    Article  PubMed  Google Scholar 

  10. Amin RS, Rutter MJ (2015) Airway disease and management in bronchopulmonary dysplasia. Clin Perinatol 42:857–870

    Article  PubMed  Google Scholar 

  11. Moschino L, Bonadies L, Baraldi E (2021) Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. Pediatr Pulmonol 56:3499–3508

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malloy KW, Austin ED (2021) Pulmonary hypertension in the child with bronchopulmonary dysplasia. Pediatr Pulmonol 56:3546–3556

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mandell E, Hysinger EB, McGrath-Morrow S (2020) Disease phenotyping of infants with severe bronchopulmonary dysplasia. Am J Resp Crit Care Med 201:1327–1329

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dyke JP, Garfinkel AC, Groves AM et al (2018) High resolution rapid neonatal whole body composition using 3.0 tesla chemical shift magnetic resonance imaging. Pediatr Res 83:638–644

    Article  PubMed  Google Scholar 

  15. Voskrebenzev A, Gutberlet M, Klimes F et al (2018) Feasibility of quantitative regional ventilation and perfusion mapping With phase-resolved functional lung MRI in healthy volunteers and COPD, CTEPH, and CF patients. MRM 79:2306–2314

    Article  CAS  PubMed  Google Scholar 

  16. Voskrebenzev A, Gutberlet M, Kaireit TF et al (2017) Low-pass imaging of dynamic acquisitions (LIDA) with a group-oriented registration (GOREG) for proton MR imaging of lung ventilation. Magn Reson Med 78:1496–1505

    Article  PubMed  Google Scholar 

  17. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35:1397–1409

    Article  PubMed  Google Scholar 

  18. Klimeš F, Voskrebenzev A, Gutberlet M et al (2019) Free-breathing quantification of regional ventilation derived by phase-resolved functional lung MRI. NMR Biomed 32:e4088

    Article  PubMed  Google Scholar 

  19. Alsady TM, Voskrebenzev A, Greer M et al (2019) MRI-derived regional flow-volume loop parameters detect early-stage chronic lung allograft dysfunction. J Magn Reson Imaging 50:1873–1882

    Article  Google Scholar 

  20. Brookes GB, Fairfax AJ (1982) Chronic upper airway obstruction: value of the flow volume loop examination in assessment and management. J R Soc Med 75:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higano NS, Bates AJ, Gunatilaka CC et al (2022) Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value. Ped Radiol 52:643–660

    Article  Google Scholar 

  22. Hysinger EB, Higano NS, Critser PJ et al (2022) Imaging in neonatal respiratory disease. Paed Respir Rev 43:44–52

    CAS  Google Scholar 

  23. Higano NS, Ruoss JL, Woods JC (2021) Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol 41:707–717

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zanette B, Schrauben EM, Munidasa S et al (2022) Clinical feasibility of structural and functional MRI in free-breathing neonates and infants. J Magn Reson Imaging 55:1696–1707

    Article  PubMed  Google Scholar 

  25. Pöhler GH, Klimeš F, Behrendt L et al (2021) Repeatability of phase-resolved functional lung (PREFUL)-MRI ventilation and perfusion parameters in healthy subjects and COPD patients. J Magn Reson Imaging 53:915–927

    Article  PubMed  Google Scholar 

  26. Kaireit TF, Gutberlet M, Voskrebenzev A et al (2018) Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients. J Magn Reson Imaging 47:1534–1541

    Article  PubMed  Google Scholar 

  27. Kaireit TF, Kern A, Voskrebenzev A et al (2021) Flow volume loop and regional ventilation assessment using phase-resolved functional lung MRI: comparison with 129 Xenon ventilation MRI and lung function testing. J Magn Reson Imaging J Magn Reson Imaging 53:1092–1105

    Article  PubMed  Google Scholar 

  28. Kaireit TF, Voskrebenzev A, Gutberlet M et al (2019) Comparison of quantitative regional perfusion-weighted phase resolved functional lung MRI with dynamic gadolinium-enhanced regional pulmonary perfusion MRI in COPD patients. J Magn Reson Imaging 49:1122–1132

    Article  PubMed  Google Scholar 

  29. Behrendt L, Voskrebenzev A, Klimeš F et al (2020) Validation of automated perfusion-weighted phase-resolved functional lung (PREFUL)-MRI in patients with pulmonary diseases. J Magn Reson Imaging 52:103–114

    Article  PubMed  Google Scholar 

  30. Couch MJ, Munidasa S, Rayment JH et al (2021) Comparison of functional free-breathing pulmonary 1H and Hyperpolarized 129Xe magnetic resonance imaging in pediatric cystic fibrosis. Acad Radiol 28:209–218

    Article  Google Scholar 

  31. Voskrebenzev A, Kaireit TF, Klimes F et al (2022) Phase-resolved functional lung MRI depicts bronchodilator changes in COPD: A retrospective analysis of a randomized controlled trial. Radiol: Cardiothora Imaging 4(2):e210147

    Google Scholar 

  32. Klimeš F, Voskrebenzev A, Gutberlet M et al (2021) 3D phase-resolved functional lung ventilation MR imaging in healthy volunteers and patients with chronic pulmonary disease. Magn Reson Med 85:912–925

    Article  PubMed  Google Scholar 

  33. Jensen EA, Dysart K, Gantz MG et al (2019) The diagnosis of bronchopulmonary dysplasia in very preterm infants. An evidence-based approach. Am J Respir Crit Care Med 200:751–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hines D, Modi N, Lee SK et al (2017) Scoping review shows wide variation in the definitions of bronchopulmonary dysplasia in preterm infants and calls for a consensus. Acta Paediatr 106:366–374

    Article  PubMed  Google Scholar 

  35. Thebaud B, Goss KN, Laughon M et al (2019) Bronchopulmonary Dysplasia Nat Rev Dis Primers 5:78

    Article  PubMed  Google Scholar 

  36. van Rossem MC, van de Loo M, Laan BJ et al (2015) Accuracy of the diagnosis of bronchopulmonary dysplasia in a referral based health care system. J Pediatr 167:540–544

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance of the pediatric and NICU nursing staff at NYP who were invaluable in the success of this study. Additional appreciation goes to the NYP MRI imaging staff and specifically to Edward Chung, B.S., R.T.(R) (MR)(ARRT), and Yasmin Abdallah, R.T.(R)(MR)(ARRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Dyke.

Ethics declarations

Conflicts of interest

R.G. is employed by Siemens Healthineers which manufactures the MRI scanner and some of the analysis software. All other authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyke, J.P., Voskrebenzev, A., Blatt, L.K. et al. Assessment of lung ventilation of premature infants with bronchopulmonary dysplasia at 1.5 Tesla using phase-resolved functional lung magnetic resonance imaging. Pediatr Radiol 53, 1076–1084 (2023). https://doi.org/10.1007/s00247-023-05598-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05598-6

Keywords

Navigation