Skip to main content

Advertisement

Log in

Imaging and surgical management of congenital heart diseases

  • ESPR
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Congenital heart disease affects approximately 1% of live births per year. In recent years, there has been a decrease in the morbidity and mortality of these cases due to advances in medical and surgical care. Imaging plays a key role in the management of these children, with chest radiography, echocardiography and chest ultrasound the first diagnostic tools, and cardiac computed tomography, catheterization and magnetic resonance imaging reserved to assess better the anatomy and physiology of the most complex cases. This article is a beginner’s guide to the anatomy of the most frequent congenital heart diseases (atrial and ventricular septal defects, abnormal pulmonary venous connections, univentricular heart, tetralogy of Fallot, transposition of the great arteries and coarctation of the aorta), their surgical management, the most common postsurgical complications, deciding which imaging modality is needed, and when and how to image gently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Di Salvo G, Miller O, Babu Narayan S et al (2018) Imaging the adult with congenital heart disease: a multimodality imaging approach - position paper from the EACVI. Eur Heart J Cardiovasc Imaging 19:1077–1098

    Article  PubMed  Google Scholar 

  2. Aguet J, Seed M, Marini D (2020) Fetal cardiovascular magnetic resonance imaging. Pediatr Radiol 50:1881–1894

    Article  PubMed  Google Scholar 

  3. Mcleod G, Shum K, Gupta T et al (2018) Echocardiography in congenital heart disease. Prog Cardiovasc Dis 61:468–475

    Article  PubMed  Google Scholar 

  4. Kellenberger CJ, Yoo S-J, Büchel Valsangiacomo ER (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  5. Krishnamurthy R (2010) Neonatal cardiac imaging. Pediatr Radiol 40:518–527

    Article  PubMed  Google Scholar 

  6. Ramirez-Suarez KI, Tierradentro-García LO, Otero HJ et al (2022) Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography). Pediatr Radiol 52:661–675

    Article  PubMed  Google Scholar 

  7. Francone M, Gimelli A, Budde RPJ et al (2022) Radiation safety for cardiovascular computed tomography imaging in paediatric cardiology: a joint expert consensus document of the EACVI, ESCR, AEPC, and ESPR. Eur Heart J Cardiovasc Imaging 23:e279–e289

    Article  PubMed  Google Scholar 

  8. Driessen MMP, Breur JMPJ, Budde RPJ et al (2015) Advances in cardiac magnetic resonance imaging of congenital heart disease. Pediatr Radiol 45:5–19

    Article  PubMed  Google Scholar 

  9. Shaddy RE, Penny D, Feltes TF et al (2021) Moss & Adams’ heart disease in infants, children, adolescents: including the fetus and young adult, 10th edn. Lippincott Williams & Wilkins

  10. Ciancarella P, Ciliberti P, Santangelo TP et al (2020) Noninvasive imaging of congenital cardiovascular defects. Radiol Med 125:1167–1185

    Article  PubMed  Google Scholar 

  11. Pontone G, Di Cesare E, Castelletti S et al (2021) Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC—SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). Radiol Med 126:365–379

    Article  PubMed  PubMed Central  Google Scholar 

  12. Francone M, Aquaro GD, Barison A et al (2021) Appropriate use criteria for cardiovascular MRI: SIC – SIRM position paper Part 2 (myocarditis, pericardial disease, cardiomyopathies and valvular heart disease). J Cardiovasc Med 22:515–529

    Article  Google Scholar 

  13. McLennan DI, Solano ECR, Handler SS et al (2021) Pulmonary vein stenosis: moving from past pessimism to future optimism. Front Pediatr 9:747812

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grosse-Wortmann L, Al-Otay A, Woo Goo H et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol 49:993–1002

    Article  PubMed  Google Scholar 

  15. Lam CZ, Nguyen ET, Yoo SJ, Wald RM (2022) Management of patients with single-ventricle physiology across the lifespan: contributions from magnetic resonance and computed tomography imaging. Can J Cardiol 38:946–962

    Article  PubMed  Google Scholar 

  16. Secinaro A, Ait-Ali L, Curione D et al (2022) Recommendations for cardiovascular magnetic resonance and computed tomography in congenital heart disease: a consensus paper from the CMR/CCT working group of the Italian Society of Pediatric Cardiology (SICP) and the Italian College of Cardiac Radiology. Radiol Med 127:788–802

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Lange C (2020) Imaging of complications following Fontan circulation in children - diagnosis and surveillance. Pediatr Radiol 50:1333–1348

    Article  PubMed  PubMed Central  Google Scholar 

  18. Secinaro A, Curione D, Mortensen KH et al (2019) Dual-source computed tomography coronary artery imaging in children. Pediatr Radiol 49:1823–1839

    Article  PubMed  Google Scholar 

  19. Caro-Dominguez P, Chaturvedi R, Chavhan G et al (2019) Magnetic resonance imaging assessment of blood flow distribution in fenestrated and completed fontan circulation with special emphasis on abdominal blood flow. Korean J Radiol 20:1186–1194

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grosse-Wortmann L, Al-Otay A, Yoo S-J (2009) Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion quantification with MRI. Circ Cardiovasc Imaging 2:219–225

    Article  PubMed  Google Scholar 

  21. Khanna G, Bhalla S, Krishnamurthy R, Canter C (2012) Extracardiac complications of the Fontan circuit. Pediatr Radiol 42:233–241

    Article  PubMed  Google Scholar 

  22. Dillman JR, Trout AT, Alsaied T et al (2020) Imaging of Fontan-associated liver disease. Pediatr Radiol 50:1528–1541

    Article  PubMed  Google Scholar 

  23. van der Ven JPG, van den Bosch E, Bogers AJCC, Helbing WA (2019) Current outcomes and treatment of tetralogy of Fallot. F1000Res 28:F1000 Faculty Rev-1530

  24. Valente AM, Cook S, Festa P et al (2014) Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography: Developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 27:111–141

    Article  PubMed  Google Scholar 

  25. Zucker EJ (2021) Computed tomography in tetralogy of Fallot: pre- and postoperative imaging evaluation. Pediatr Radiol. https://doi.org/10.1007/S00247-021-05179-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Norton KI, Tong C, Glass RBJ, Nielsen JC (2006) Cardiac MR imaging assessment following tetralogy of fallot repair. Radiographics 26:197–211

    Article  PubMed  Google Scholar 

  27. Yim D, Riesenkampff E, Caro-Dominguez P et al (2017) Assessment of diffuse ventricular myocardial fibrosis using native T1 in children with repaired tetralogy of Fallot. Circ Cardiovasc Imaging 10:e005695

    Article  PubMed  Google Scholar 

  28. Geva T, Sandweiss BM, Gauvreau K et al (2004) Factors associated with impaired clinical status in long-term survivors of tetralogy of Fallot repair evaluated by magnetic resonance imaging. J Am Coll Cardiol 43:1068–1074

    Article  PubMed  Google Scholar 

  29. Ali LA, Gentili F, Festa P et al (2021) Long-term assessment of clinical outcomes and disease progression in patients with corrected tetralogy of Fallot. Eur Rev Med Pharmacol Sci 25:6300–6310

    CAS  PubMed  Google Scholar 

  30. Cohen MS, Eidem BW, Cetta F et al (2016) Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance and the society of cardiovascular computed tomography. J Am Soc Echocardiogr 29:571–621

    Article  PubMed  Google Scholar 

  31. Ntsinjana HN, Tann O, Hughes M et al (2017) Utility of adenosine stress perfusion CMR to assess paediatric coronary artery disease. Eur Heart J Cardiovasc Imaging 18:898–905

    Article  PubMed  Google Scholar 

  32. Losay J, Touchot A, Serraf A et al (2001) Late outcome after arterial switch operation for transposition of the great arteries. Circulation 104:I-121–I-126

  33. Legendre A, Losay J, Touchot-Kone A et al (2003) Coronary events after arterial switch operation for transposition of the great arteries. Circulation 108(Suppl 1):II186–II190

    PubMed  Google Scholar 

  34. Schwartz ML, Gauvreau K, del Nido P et al (2004) Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation 110(11 Suppl 1):II128–II32

    PubMed  Google Scholar 

  35. Araoz PA, Reddy GP, Tarnoff H et al (2003) MR findings of collateral circulation are more accurate measures of hemodynamic significance than arm-leg blood pressure gradient after repair of coarctation of the aorta. J Magn Reson Imaging 17:177–183

    Article  PubMed  Google Scholar 

  36. Hom JJ, Ordovas K, Reddy GP (2008) Velocity-encoded cine MR imaging in aortic coarctation: functional assessment of hemodynamic events. Radiographics 28:407–416

    Article  PubMed  Google Scholar 

  37. Gallego P, Valverde I (2021) Multimodality imaging innovations in adult congenital heart disease. Springer

  38. Velasco Forte MN, Hussain T, Roest A et al (2019) Living the heart in three dimensions: applications of 3D printing in CHD. Cardiol Young 29:733–743

    Article  Google Scholar 

  39. Chen C, Quin C, Qiu H et al (2020) Deep learning for cardiac image segmentation: a review. Front Cardiovasc Med 7:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Caro-Domínguez.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro-Domínguez, P., Secinaro, A., Valverde, I. et al. Imaging and surgical management of congenital heart diseases. Pediatr Radiol 53, 677–694 (2023). https://doi.org/10.1007/s00247-022-05536-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05536-y

Keywords

Navigation