Skip to main content
Log in

Magnetic resonance urography: a practical approach to preparation, protocol and interpretation

  • Improving Protocols
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance urography (MRU) is an important MRI application that provides noninvasive comprehensive morphological and functional evaluation of the kidneys and urinary tract. It can be used to assess congenital anomalies of the kidney and urinary tract, which often present as urinary tract dilation. In children, MRU allows for high tissue contrast and high spatial resolution without requiring ionizing radiation. Magnetic resonance urography requires patient preparation in the form of pre-examination intravenous hydration, placement of a urinary catheter, and the administration of diuretics at the time of the exam. The imaging protocol is based on T2-weighted images for anatomical assessment and dynamic post-contrast images for functional evaluation. These images are then used to generate quantitative and graphic results including contrast transit and excretion time as well as to calculate differential renal function. This review focuses on a simple approach to pediatric MRU acquisition and interpretation based on clinical cases and the authors’ experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dickerson EC, Dillman JR, Smith EA et al (2015) Pediatric MR urography: indications, techniques, and approach to review. Radiographics 35:1208–1230

    Article  PubMed  Google Scholar 

  2. Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28:23–46

    Article  PubMed  Google Scholar 

  3. Viteri B, Calle-Toro JS, Furth S et al (2020) State-of-the-art renal imaging in children. Pediatrics 145:e20190829

    Article  PubMed  Google Scholar 

  4. Viteri B, Elsingergy M, Roem J et al (2021) Ultrasound-based renal parenchymal area and kidney function decline in infants with congenital anomalies of the kidney and urinary tract. Semin Nephrol 41:427–433

    Article  PubMed  PubMed Central  Google Scholar 

  5. Viteri B, Calle-Toro JS, Ballester L et al (2021) Potential benefits of functional magnetic resonance urography (fMRU) over MAG3 renal scan in children with obstructive uropathy. J Pediatr Urol 17:659.e651–659.e657

    Article  Google Scholar 

  6. Wong MCY, Sertorio F, Damasio MB et al (2019) Surgical validation of functional magnetic resonance urography in the study of ureteropelvic junction obstruction in a pediatric cohort. J Pediatr Urol 15:168–175

    Article  CAS  PubMed  Google Scholar 

  7. Khrichenko D, Darge K (2010) Functional analysis in MR urography — made simple. Pediatr Radiol 40:182–199

    Article  PubMed  Google Scholar 

  8. Silverman SG, Leyendecker JR, Amis ES Jr (2009) What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250:309–323

  9. Morin CE, McBee MP, Trout AT et al (2018) Use of MR urography in pediatric patients. Curr Urol Rep 19:93–93

    Article  PubMed  PubMed Central  Google Scholar 

  10. McGee K (2003) The role of a child life specialist in a pediatric radiology department. Pediatr Radiol 33:467–474

    Article  PubMed  Google Scholar 

  11. Staatz G, Nolte-Ernsting CCA, Adam G et al (2000) Feasibility and utility of respiratory-gated, gadolinium-enhanced T1-weighted magnetic resonance urography in children. Investig Radiol 35:504–512

    Article  CAS  Google Scholar 

  12. Kurugol S, Seager CM, Thaker H et al (2020) Feed and wrap magnetic resonance urography provides anatomic and functional imaging in infants without anesthesia. J Pediatr Urol 16:116–120

    Article  PubMed  Google Scholar 

  13. Tsiflikas I, Obermayr F, Werner S et al (2019) Functional magnetic resonance urography in infants: feasibility of a feed-and-sleep technique. Pediatr Radiol 49:351–357

    Article  PubMed  Google Scholar 

  14. Grattan-Smith JD, Little SB, Jones RA (2008) MR urography in children: how we do it. Pediatr Radiol 38:S3–S17

    Article  PubMed  Google Scholar 

  15. Ergen FB, Hussain HK, Carlos RC et al (2007) 3D excretory MR urography: improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging 25:783–789

    Article  PubMed  Google Scholar 

  16. Szopiński K, Szopińska M, Borówka A et al (2000) Magnetic resonance urography: initial experience of a low-dose Gd-DTPA-enhanced technique. Eur Radiol 10:1158–1164

    Article  PubMed  Google Scholar 

  17. Mallek R, Bankier AA, Etele-Hainz A et al (1996) Distinction between obstructive and nonobstructive hydronephrosis: value of diuresis duplex Doppler sonography. AJR Am J Roentgenol 166:113–117

    Article  CAS  PubMed  Google Scholar 

  18. Elkini M (1961) The prone position in intravenous urography for study of the upper urinary tract. Radiology 76:961–967

    Article  Google Scholar 

  19. Grattan-Smith JD, Jones RA (2006) MR urography in children. Pediatr Radiol 36:1119–1132

    Article  PubMed  Google Scholar 

  20. Roy C, Ohana M, Host P et al (2014) MR urography (MRU) of non-dilated ureter with diuretic administration: static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR. Eur J Radiol Open 1:6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang Y, Yamashita Y, Namimoto T et al (1996) The value of MR urography that uses HASTE sequences to reveal urinary tract disorders. AJR Am J Roentgenol 167:1497–1502

    Article  CAS  PubMed  Google Scholar 

  22. Glockner JF, Saranathan M, Bayram E et al (2013) Breath-held MR cholangiopancreatography (MRCP) using a 3D Dixon fat-water separated balanced steady state free precession sequence. Magn Reson Imaging 31:1263–1270

    Article  PubMed  PubMed Central  Google Scholar 

  23. Naganawa S, Koshikawa T, Fukatsu H et al (2002) Fast recovery 3D fast spin-echo MR imaging of the inner ear at 3 T. AJNR Am J Neuroradiol 23:299–302

    PubMed  PubMed Central  Google Scholar 

  24. Kozak BM, Jaimes C, Kirsch J et al (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502

    Article  PubMed  Google Scholar 

  25. Krishnamurthy R, Khrichenko D, Block T et al (2021) Feasibility of quantitative assessment of renal function using motion-insensitive MR urography in pediatric patients. IPR 2021. Pediatr Radiol 51:S37

  26. Delgado J, Bedoya MA, Adeb M et al (2015) Optimizing functional MR urography: prime time for a 30-minutes-or-less fMRU. Pediatr Radiol 45:1333–1343

    Article  PubMed  Google Scholar 

  27. Khrichenko D (2017) CHOP-fMRU. Children’s Hospital of Philadelphia, Philadelphia

    Google Scholar 

  28. Khrichenko D (2020) Parametric MRI (pMRI). https://www.parametricmri.com. Accessed 30 Aug 2022

  29. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Little SB, Jones RA, Grattan-Smith JD (2008) Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol 38:S106–S124

    Article  PubMed  Google Scholar 

  31. Jones RA, Perez-Brayfield MR, Kirsch AJ et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50

    Article  PubMed  Google Scholar 

  32. Kovanlikaya A, Okkay N, Cakmakci H et al (2004) Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol 49:76–80

    Article  PubMed  Google Scholar 

  33. Grattan-Smith JD, Little SB, Jones RA (2008) Evaluation of reflux nephropathy, pyelonephritis and renal dysplasia. Pediatr Radiol 38:S83–S105

    Article  PubMed  Google Scholar 

  34. Craig WD, Wagner BJ, Travis MD (2008) Pyelonephritis: radiologic–pathologic review. Radiographics 28:255–276

    Article  PubMed  Google Scholar 

  35. Freeman CW, Altes TA, Rehm PK et al (2018) Unenhanced MRI as an alternative to (99m)Tc-labeled dimercaptosuccinic acid scintigraphy in the detection of pediatric renal scarring. AJR Am J Roentgenol 210:869–875

    Article  PubMed  Google Scholar 

  36. Berrocal T, López-Pereira P, Arjonilla A et al (2002) Anomalies of the distal ureter, bladder, and urethra in children: embryologic, radiologic, and pathologic features. Radiographics 22:1139–1164

    Article  PubMed  Google Scholar 

  37. McMann LP, Kirsch AJ, Scherz HC et al (2006) Magnetic resonance urography in the evaluation of prenatally diagnosed hydronephrosis and renal dysgenesis. J Urol 176:1786–1792

    Article  PubMed  Google Scholar 

  38. Gimpel C, Avni EF, Breysem L et al (2019) Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology 290:769–782

    Article  PubMed  Google Scholar 

  39. Calle-Toro JS, Back SJ, Maya C et al (2021) Identification and characterization of calyceal diverticula with MR urography (MRU) in children. Abdom Radiol 46:303–310

    Article  Google Scholar 

  40. Devlieger R, Hindryckx A (2020) Ch. 33: kidney and urinary tract disorders. In: Pandya PP, Oepkes D, Sebire NJ, Wapner RJ (eds) Fetal medicine, 3rd edn. Elsevier, London, pp 351–372.e352

    Chapter  Google Scholar 

  41. Riccabona M, Simbrunner J, Ring E et al (2002) Feasibility of MR urography in neonates and infants with anomalies of the upper urinary tract. Eur Radiol 12:1442–1450

    Article  CAS  PubMed  Google Scholar 

  42. Calle-Toro JS, Maya CL, Emad-Eldin S et al (2019) Morphologic and functional evaluation of duplicated renal collecting systems with MR urography: a descriptive analysis. Clin Imaging 57:69–76

    Article  PubMed  Google Scholar 

  43. Share JC, Lebowitz RL (1989) Ectopic ureterocele without ureteral and calyceal dilatation (ureterocele disproportion): findings on urography and sonography. AJR Am J Roentgenol 152:567–571

    Article  CAS  PubMed  Google Scholar 

  44. Li TR, Du XK, Huo TL (2011) Magnetic resonance urography and X-ray urography findings of congenital megaureter. Chin Med Sci J 26:103–108

    Article  PubMed  Google Scholar 

  45. Świȩtoń D, Grzywińska M, Czarniak P et al (2022) The emerging role of MR urography in imaging megaureters in children. Front Pediatr 10:839128

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ntoulia A, Aguirre Pascual E, Back SJ et al (2021) Contrast-enhanced voiding urosonography, part 1: vesicoureteral reflux evaluation. Pediatr Radiol 51:2351–2367

    Article  PubMed  Google Scholar 

  47. Avanoglu A, Tiryaki S (2020) Embryology and morphological (mal)development of UPJ. Front Pediatr 8:137

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meng Z, Lin D, Wang G et al (2021) Congenital midureteral stenosis in children: a 13-year retrospective study based on data from a large pediatric medical center. BMC Urol 21:152

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hoffer FA, Lebowitz RL (1985) Intermittent hydronephrosis: a unique feature of ureteropelvic junction obstruction caused by a crossing renal vessel. Radiology 156:655–658

    Article  CAS  PubMed  Google Scholar 

  50. Pavicevic PK, Saranovic DZ, Mandic MJ et al (2015) Efficacy of magnetic resonance urography in detecting crossing renal vessels in children with ureteropelvic junction obstruction. Ann Ital Chir 86:443–449

    PubMed  Google Scholar 

  51. Valla JS, Breaud J, Carfagna L et al (2003) Treatment of ureterocele on duplex ureter: upper pole nephrectomy by retroperitoneoscopy in children based on a series of 24 cases. Eur Urol 43:426–429

    Article  PubMed  Google Scholar 

  52. Hlabangana LT, Elsingergy M, Ahmed A et al (2021) Inter-rater reliability in quality assurance (QA) of pediatric chest X-rays. J Med Imaging Radiat Sci 52:427–434

    Article  PubMed  Google Scholar 

  53. Elsingergy M, Carlsson T, Andronikou S (2022) Evaluation of quality of renal tract ultrasound scans and reports performed in children with first urinary tract infection. J Med Imaging Radiat Sci 53:65–74

    Article  PubMed  Google Scholar 

  54. Calle-Toro JS, Elsingergy M, Dennis R et al (2022) Frequency of duodenal anatomical variants in neonatal and pediatric upper gastrointestinal tract series (UGI) and the influence of exam quality on diagnostic reporting of these. Clin Imaging 87:28–33

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansel J. Otero.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otero, H.J., Elsingergy, M.M. & Back, S.J. Magnetic resonance urography: a practical approach to preparation, protocol and interpretation. Pediatr Radiol 53, 1391–1404 (2023). https://doi.org/10.1007/s00247-022-05511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05511-7

Keywords

Navigation