Skip to main content

Advertisement

Log in

Lung and large airway imaging: magnetic resonance imaging versus computed tomography

  • Thoracic imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Disorders of the respiratory system are common in children and imaging plays an important role for initial diagnosis and follow-up evaluation. Radiographs are typically the first-line imaging test for respiratory symptoms in children and, when advanced imaging is required, CT has been the most frequently used imaging modality. However, because of increasing concern about potentially harmful effects of ionizing radiation on children, there has been a shift toward MRI in pediatric imaging. Although MRI of chest in children presents many technical challenges, recent advances in MRI technology are overcoming many of these issues, and MRI is now being used for evaluating the lung and large airway in children at centers with expertise in pediatric chest MRI. In this article we review the state of pediatric lung and large airway imaging, with an emphasis on cross-sectional modalities and the roles of MRI versus CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rudan I, Tomaskovic L, Boschi-Pinto C, Campbell H (2004) Global estimate of the incidence of clinical pneumonia among children under five years of age. Bull World Health Organ 82:895–903

    PubMed  Google Scholar 

  2. Jokinen C, Heiskanen L, Juvonen H et al (1993) Incidence of community-acquired pneumonia in the population of four municipalities in eastern Finland. Am J Epidemiol 137:977–988

    Article  CAS  PubMed  Google Scholar 

  3. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–231

    Article  PubMed  Google Scholar 

  4. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  5. Mayo JR, Aldrich J, Muller NL (2003) Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology 228:15–21

    Article  PubMed  Google Scholar 

  6. Sodhi KS, Lee EY (2014) What all physicians should know about the potential radiation risk that computed tomography poses for paediatric patients. Acta Paediatr 103:807–811

    Article  PubMed  Google Scholar 

  7. Liszewski MC, Ciet P, Lee EY (2019) MR imaging of lungs and airways in children: past and present. Magn Reson Imaging Clin N Am 27:201–225

    Article  PubMed  Google Scholar 

  8. Liszewski MC, Gorkem S, Sodhi KS, Lee EY (2017) Lung magnetic resonance imaging for pneumonia in children. Pediatr Radiol 47:1420–1430

    Article  PubMed  Google Scholar 

  9. Liszewski MC, Ciet P, Sodhi KS, Lee EY (2017) Updates on MRI evaluation of pediatric large airways. AJR Am J Roentgenol 208:971–981

    Article  PubMed  Google Scholar 

  10. Wielpütz MO, Lee HY, Koyama H et al (2018) Morphologic characterization of pulmonary nodules with ultrashort TE MRI at 3T. AJR Am J Roentgenol 210:1216–1225

    Article  PubMed  Google Scholar 

  11. Newbegin K, Pilkington K, Shanthikumar S, Ranganathan S (2018) Clinical utility of surveillance computed tomography scans in infants with cystic fibrosis. Pediatr Pulmonol 53:1387–1390

    Article  PubMed  Google Scholar 

  12. Ciet P, Wielopolski P, Manniesing R et al (2014) Spirometer-controlled cine magnetic resonance imaging used to diagnose tracheobronchomalacia in paediatric patients. Eur Respir J 43:115–124

    Article  PubMed  Google Scholar 

  13. Ciet P, Boiselle PM, Heidinger B et al (2017) Cine MRI of tracheal dynamics in healthy volunteers and patients with tracheobronchomalacia. AJR Am J Roentgenol 209:757–761

    Article  PubMed  Google Scholar 

  14. Lee EY, Siegel MJ (2007) MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging 22:300–309

    Article  PubMed  Google Scholar 

  15. Lee EY, Litmanovich D, Boiselle PM (2009) Multidetector CT evaluation of tracheobronchomalacia. Radiol Clin N Am 47:261–269

    Article  PubMed  Google Scholar 

  16. Lee EY, Strauss KJ, Tracy DA et al (2010) Comparison of standard-dose and reduced-dose expiratory MDCT techniques for assessment of tracheomalacia in children. Acad Radiol 17:504–510

    Article  PubMed  Google Scholar 

  17. Lee EY, Greenberg SB, Boiselle PM (2011) Multidetector computed tomography of pediatric large airway diseases: state-of-the-art. Radiol Clin N Am 49:869–893

    Article  PubMed  Google Scholar 

  18. Lee EY, Tracy DA, Mahmood SA et al (2011) Preoperative MDCT evaluation of congenital lung anomalies in children: comparison of axial, multiplanar, and 3D images. AJR Am J Roentgenol 196:1040–1046

    Article  PubMed  Google Scholar 

  19. Kuo W, Ciet P, Tiddens HA et al (2014) Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 189:1328–1336

    Article  PubMed  Google Scholar 

  20. Moloney F, Kavanagh RG, Ronan NJ et al (2021) Ultra-low-dose thoracic CT with model-based iterative reconstruction (MBIR) in cystic fibrosis patients undergoing treatment with cystic fibrosis transmembrane conductance regulators (CFTR). Clin Radiol 76:393.e9–393.e317

    Article  CAS  Google Scholar 

  21. Willemink MJ, Persson M, Pourmorteza A et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289:293–312

    Article  PubMed  Google Scholar 

  22. Baez JC, Seethamraju RT, Mulkern R et al (2015) Pediatric chest MR imaging: sedation, techniques, and extracardiac vessels. Magn Reson Imaging Clin N Am 23:321–335

    Article  PubMed  Google Scholar 

  23. Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384

    Article  CAS  PubMed  Google Scholar 

  24. Callahan MJ, MacDougall RD, Bixby SD et al (2018) Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol 48:21–30

    Article  PubMed  Google Scholar 

  25. Cauldwell C (2011) Anesthesia risks associated with pediatric imaging. Pediatr Radiol 41:949–950

    Article  PubMed  Google Scholar 

  26. de Amorim e Silva CJ, Mackenzie A, Hallowell LM et al (2006) Practice MRI: reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol 50:319–323

  27. Girshin M, Shapiro V, Rhee A et al (2009) Increased risk of general anesthesia for high-risk patients undergoing magnetic resonance imaging. J Comput Assist Tomogr 33:312–315

    Article  PubMed  Google Scholar 

  28. Blitman NM, Lee HK, Jain VR et al (2007) Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 31:789–794

    Article  PubMed  Google Scholar 

  29. Serai SD, Rapp JB, States LJ et al (2021) Pediatric lung MRI: currently available and emerging techniques. AJR Am J Roentgenol 216:781–790

    Article  PubMed  Google Scholar 

  30. Liszewski MC, Hersman FW, Altes TA et al (2013) Magnetic resonance imaging of pediatric lung parenchyma, airways, vasculature, ventilation, and perfusion: state of the art. Radiol Clin N Am 51:555–582

    Article  PubMed  Google Scholar 

  31. Ciet P, Serra G, Bertolo S et al (2016) Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT. Eur Radiol 26:780–787

    Article  PubMed  Google Scholar 

  32. Ciet P, Serra G, Andrinopoulou ER et al (2016) Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging. Eur Radiol 26:3830–3839

    Article  PubMed  Google Scholar 

  33. Ciet P, Bertolo S, Ros M et al (2017) Detection and monitoring of lung inflammation in cystic fibrosis during respiratory tract exacerbation using diffusion-weighted magnetic resonance imaging. Eur Respir J 50:1601437

    Article  PubMed  CAS  Google Scholar 

  34. Tepper LA, Ciet P, Caudri D et al (2016) Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 51:34–41

    Article  PubMed  Google Scholar 

  35. Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5-T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357

    Article  PubMed  Google Scholar 

  36. Sodhi KS, Khandelwal N, Saxena AK et al (2016) Rapid lung MRI in children with pulmonary infections: time to change our diagnostic algorithms. J Magn Reson Imaging 43:1196–1206

    Article  PubMed  Google Scholar 

  37. Serra G, Milito C, Mitrevski M et al (2011) Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radiosensitivity. Chest 140:1581–1589

    Article  PubMed  Google Scholar 

  38. Attenberger UI, Morelli JN, Henzler T et al (2014) 3 tesla proton MRI for the diagnosis of pneumonia/lung infiltrates in neutropenic patients with acute myeloid leukemia: initial results in comparison to HRCT. Eur J Radiol 83:e61–e66

    Article  CAS  PubMed  Google Scholar 

  39. Rieger C, Herzog P, Eibel R et al (2008) Pulmonary MRI — a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer 16:599–606

    Article  CAS  PubMed  Google Scholar 

  40. Ekinci A, Yucel Ucarkus T, Okur A et al (2016) MRI of pneumonia in immunocompromised patients: comparison with CT. Diagn Interv Radiol 23:22–28

    Article  PubMed Central  Google Scholar 

  41. Konietzke P, Mueller J, Wuennemann F et al (2020) The value of chest magnetic resonance imaging compared to chest radiographs with and without additional lung ultrasound in children with complicated pneumonia. PLoS One 15:e0230252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Regier M, Kandel S, Kaul MG et al (2007) Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17:1341–1351

    Article  CAS  PubMed  Google Scholar 

  43. Ciet P, Tiddens HA, Wielopolski PA et al (2015) Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging. Pediatr Radiol 45:1901–1915

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ciet P, Boiselle PM, Michaud G et al (2016) Optimal imaging protocol for measuring dynamic expiratory collapse of the central airways. Clin Radiol 71:e49–e55

    Article  CAS  PubMed  Google Scholar 

  45. Salamon E, Lever S, Kuo W et al (2017) Spirometer guided chest imaging in children: it is worth the effort! Pediatr Pulmonol 52:48–56

    Article  PubMed  Google Scholar 

  46. Lee EY, Zucker EJ, Restrepo R et al (2013) Advanced large airway CT imaging in children: evolution from axial to 4-D assessment. Pediatr Radiol 43:285–297

    Article  PubMed  Google Scholar 

  47. Serai SD, Laor T, Dwek JR et al (2014) Feasibility of ultrashort TE (UTE) imaging of children at 1.5 T. Pediatr Radiol 44:103–108

    Article  PubMed  Google Scholar 

  48. Campbell-Washburn AE (2020) 2019 American Thoracic Society BEAR cage winning proposal: lung imaging using high-performance low-field magnetic resonance imaging. Am J Respir Crit Care Med 201:1333–1336

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Liszewski.

Ethics declarations

Conflicts of interest

Mark C. Liszewski is the recipient of grant funding for an unrelated study from Carestream Health Inc., is an unpaid member of the Carestream Health Medical Advisory Board and is the recipient of meal and travel support from Carestream Health. Pierluigi Ciet is the recipient of grant funding for an unrelated study from NWO (Netherlands) and unrelated consulting fees from Editamed Srl (Italy). The other authors report no conflicts.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liszewski, M.C., Ciet, P., Winant, A.J. et al. Lung and large airway imaging: magnetic resonance imaging versus computed tomography. Pediatr Radiol 52, 1814–1825 (2022). https://doi.org/10.1007/s00247-022-05386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05386-8

Keywords

Navigation