Skip to main content

Advertisement

Log in

Imaging evaluation of the pediatric mediastinum: new International Thymic Malignancy Interest Group classification system for children

  • Thoracic imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Mediastinal masses are commonly identified in the pediatric population with cross-sectional imaging central to the diagnosis and management of these lesions. With greater anatomical definition afforded by cross-sectional imaging, classification of mediastinal masses into the traditional anterior, middle and posterior mediastinal compartments — as based on the lateral chest radiograph — has diminishing application. In recent years, the International Thymic Malignancy Interest Group (ITMIG) classification system of mediastinal masses, which is cross-sectionally based, has garnered acceptance by multiple thoracic societies and been applied in adults. Therefore, there is a need for pediatric radiologists to clearly understand the ITMIG classification system and how it applies to the pediatric population. The main purpose of this article is to provide an updated review of common pediatric mediastinal masses and mediastinal manifestations of systemic disease processes in the pediatric population based on the new ITMIG classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Acharya PT, Ali S, Stanescu AL et al (2019) Pediatric mediastinal masses. Magn Reson Imaging Clin North Am 27:227–242

    Article  Google Scholar 

  2. Lee EY (2009) Evaluation of non-vascular mediastinal masses in infants and children: an evidence-based practical approach. Pediatr Radiol 39:184–190

    Article  Google Scholar 

  3. Ranganath SH, Lee EY, Restrepo R, Eisenberg RL (2012) Mediastinal masses in children. AJR Am J Roentgenol 198:W197–W216

    Article  PubMed  Google Scholar 

  4. Carter BW, Tomiyama N, Bhora FY et al (2014) A modern definition of mediastinal compartments. J Thorac Oncol 9:S97–S101

    Article  PubMed  Google Scholar 

  5. Thacker PG, Mahani MG, Lee EY (2015) Imaging evaluation of mediastinal masses in children and adults. J Thorac Imaging 30:21

    Google Scholar 

  6. Fujimoto K, Hara M, Tomiyama N et al (2014) Proposal for a new mediastinal compartment classification of transverse plane images according to the Japanese Association for Research on the Thymus (JART) general rules for the study of mediastinal tumors. Oncol Rep 31:565–572

    Article  PubMed  Google Scholar 

  7. Nasseri F, Eftekhari F (2010) Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfalls. Radiographics 30:413–428

    Article  PubMed  Google Scholar 

  8. Tian L, Cai P-Q, Cui C-Y et al (2015) Reactive thymic hyperplasia following chemotherapy for children with lymphoma: computed tomography may be able to provide valuable information to avoid over-treatment. Eur J Cardiothorac Surg 47:883–889

    Article  PubMed  Google Scholar 

  9. Takahashi K, Al-Janabi NJ (2010) Computed tomography and magnetic resonance imaging of mediastinal tumors. J Magn Reson Imaging 32:1325–1339

    Article  PubMed  Google Scholar 

  10. Hamza A, Weissferdt A (2019) Non-neoplastic and benign tumoral lesions of the thymic gland: a review and update. Adv Anat Pathol 26:257–269

    Article  PubMed  Google Scholar 

  11. Ueno T, Tanaka YO, Nagata M et al (2004) Spectrum of germ cell tumors: from head to toe. Radiographics 24:387–404

    Article  PubMed  Google Scholar 

  12. Rosado-de-Christenson ML, Templeton PA, Moran CA (1992) From the archives of the AFIP. Mediastinal germ cell tumors: radiologic and pathologic correlation. Radiographics 12:1013–1030

    Article  CAS  PubMed  Google Scholar 

  13. Bishop MA, Kyriakopoulos C (2021) Mediastinal seminoma. StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  14. Williams LA, Pankratz N, Lane J et al (2018) Klinefelter syndrome in males with germ cell tumors: a report from the Children’s Oncology Group. Cancer 124:3900–3908

    Article  PubMed  Google Scholar 

  15. Toma P, Granata C, Rossi A, Garaventa A (2007) Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics 27:1335–1354

    Article  PubMed  Google Scholar 

  16. Averill LW, Acikgoz G, Miller RE et al (2013) Update on pediatric leukemia and lymphoma imaging. Semin Ultrasound CT MR 34:578–599

    Article  PubMed  Google Scholar 

  17. Wassef M, Blei F, Adams D et al (2015) Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 136:e203–e214

    Article  PubMed  Google Scholar 

  18. Chamli A, Aggarwal P, Jamil RT, Litaiem N (2021) Hemangioma. StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  19. Olivieri B, White CL, Restrepo R et al (2016) Low-flow vascular malformation pitfalls: from clinical examination to practical imaging evaluation — part 2, venous malformation mimickers. AJR Am J Roentgenol 206:952–962

    Article  PubMed  Google Scholar 

  20. Johnson AB, Richter GT (2018) Vascular anomalies. Clin Perinatol 45:737–749

    Article  PubMed  Google Scholar 

  21. Lee E (2017) Pediatric radiology: practical imaging evaluation of infants and children. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  22. Jeung M-Y, Gasser B, Gangi A et al (2002) Imaging of cystic masses of the mediastinum. Radiographics 22:S79–S93

    Article  PubMed  Google Scholar 

  23. Sopfe J, Endres A, Campbell K et al (2019) Castleman disease in pediatrics: insights on presentation, treatment, and outcomes from a two-site retrospective cohort study. Pediatr Blood Cancer 66:e27613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bonekamp D, Horton KM, Hruban RH, Fishman EK (2011) Castleman disease: the great mimic. Radiographics 31:1793–1807

    Article  PubMed  Google Scholar 

  25. Shetty AK, Gedalia A (2008) Childhood sarcoidosis: a rare but fascinating disorder. Pediatr Rheumatol 6:16

    Article  Google Scholar 

  26. Hoffmann AL, Milman N, Byg KE (2004) Childhood sarcoidosis in Denmark 1979–1994: incidence, clinical features and laboratory results at presentation in 48 children. Acta Paediatr 93:30–36

    Article  CAS  PubMed  Google Scholar 

  27. Lindsley CB, Petty RE (2000) Overview and report on international registry of sarcoid arthritis in childhood. Curr Rheumatol Rep 2:343–348

    Article  CAS  PubMed  Google Scholar 

  28. Pattishall EN, Kendig EL (1996) Sarcoidosis in children. Pediatr Pulmonol 22:195–203

    Article  CAS  PubMed  Google Scholar 

  29. Fink CW, Cimaz R (1997) Early onset sarcoidosis: not a benign disease. J Rheumatol 24:174–177

    CAS  PubMed  Google Scholar 

  30. Nathan N, Sileo C, Calender A et al (2019) Paediatric sarcoidosis. Paediatr Respir Rev 29:53–59

    PubMed  Google Scholar 

  31. Gorkem SB, Köse S, Lee EY et al (2017) Thoracic MRI evaluation of sarcoidosis in children. Pediatr Pulmonol 52:494–499

    Article  PubMed  Google Scholar 

  32. Gorkem SB, Coskun A, Yikilmaz A et al (2013) Evaluation of pediatric thoracic disorders: comparison of unenhanced fast-imaging-sequence 1.5-T MRI and contrast-enhanced MDCT. AJR Am J Roentgenol 200:1352–1357

    Article  PubMed  Google Scholar 

  33. Chung JH, Little BP, Forssen AV et al (2013) Proton MRI in the evaluation of pulmonary sarcoidosis: comparison to chest CT. Eur J Radiol 82:2378–2385

    Article  PubMed  Google Scholar 

  34. Bauer DE, Mitchell CM, Strait KM et al (2012) Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin Cancer Res 18:5773–5779

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jung M, Kim S, Lee J et al (2019) Clinicopathological and preclinical findings of NUT carcinoma: a multicenter study. Oncologist 24:e740–e748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. French CA (2010) NUT midline carcinoma. Cancer Genet Cytogenet 203:16–20

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chau NG, Ma C, Danga K et al (2020) An anatomical site and genetic-based prognostic model for patients with nuclear protein in testis (NUT) midline carcinoma: analysis of 124 patients. JNCI Cancer Spectr 4:pkz094

  38. French CA, Miyoshi I, Kubonishi I et al (2003) BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 63:304–307

    CAS  PubMed  Google Scholar 

  39. Bair RJ, Chick JF, Chauhan NR et al (2014) Demystifying NUT midline carcinoma: radiologic and pathologic correlations of an aggressive malignancy. AJR Am J Roentgenol 203:W391–W399

    Article  PubMed  Google Scholar 

  40. Nelson BA, Lee EY, Bauer DE (2010) BRD4-NUT carcinoma of the mediastinum in a pediatric patient. J Thorac Imaging 25:4

    Article  Google Scholar 

  41. Virarkar M, Saleh M, Ramani NS et al (2020) Imaging spectrum of NUT carcinomas. Clin Imaging 67:198–206

    Article  PubMed  Google Scholar 

  42. Sholl LM, Nishino M, Pokharel S et al (2015) Primary pulmonary NUT midline carcinoma: clinical, radiographic, and pathologic characterizations. J Thorac Oncol 10:951–959

    Article  PubMed  PubMed Central  Google Scholar 

  43. Humpl T, Fineman J, Qureshi AM (2021) The many faces and outcomes of pulmonary vein stenosis in early childhood. Pediatr Pulmonol 56:649–655

    Article  PubMed  Google Scholar 

  44. Backes CH, Nealon E, Armstrong AK et al (2018) Pulmonary vein stenosis in infants: a systematic review, meta-analysis, and meta-regression. J Pediatr 198:36–45.e3

    Article  PubMed  Google Scholar 

  45. Charlagorla P, Becerra D, Patel PM et al (2016) Congenital pulmonary vein stenosis: encouraging mid-term outcome. Pediatr Cardiol 37:125–130

    Article  PubMed  Google Scholar 

  46. Drossner DM, Kim DW, Maher KO, Mahle WT (2008) Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics 122:e656–e661

    Article  PubMed  Google Scholar 

  47. Lee EY, Jenkins KJ, Vargas SO et al (2021) Thoracic multidetector computed tomography angiography of primary pulmonary vein stenosis in children: evaluation of characteristic extravascular findings. J Thorac Imaging 36:318–325

    Article  PubMed  Google Scholar 

  48. Kovach AE, Magcalas PM, Ireland C et al (2017) Paucicellular fibrointimal proliferation characterizes pediatric pulmonary vein stenosis: clinicopathologic analysis of 213 samples from 97 patients. Am J Surg Pathol 41:1198–1204

    Article  PubMed  Google Scholar 

  49. Lopez-Herrera G, Tampella G, Pan-Hammarström Q et al (2012) Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet 90:986–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuehn HS, Ouyang W, Lo B et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alkhairy OK, Abolhassani H, Rezaei N et al (2016) Spectrum of phenotypes associated with mutations in LRBA. J Clin Immunol 36:33–45

    Article  CAS  PubMed  Google Scholar 

  52. Habibi S, Zaki-Dizaji M, Rafiemanesh H et al (2019) Clinical, immunologic, and molecular spectrum of patients with LPS-responsive beige-like anchor protein deficiency: a systematic review. J Allergy Clin Immunol Pract 7:2379–2386.e5

    Article  PubMed  Google Scholar 

  53. Schubert D, Bode C, Kenefeck R et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20:1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwab C, Gabrysch A, Olbrich P et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol 142:1932–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gámez-Díaz L, August D, Stepensky P et al (2016) The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol 137:223–230

    Article  PubMed  CAS  Google Scholar 

  56. Shamriz O, Shadur B, NaserEddin A et al (2018) Respiratory manifestations in LPS-responsive beige-like anchor (LRBA) protein-deficient patients. Eur J Pediatr 177:1163–1172

    Article  PubMed  Google Scholar 

  57. Krone KA, Winant AJ, Vargas SO et al (2021) Pulmonary manifestations of immune dysregulation in CTLA-4 haploinsufficiency and LRBA deficiency. Pediatr Pulmonol 56:2232–2241

    Article  PubMed  Google Scholar 

  58. Haskologlu S, Kostel Bal S, Islamoglu C et al (2020) Clinical, immunological features and follow up of 20 patients with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Allergy Immunol 31:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aydin SE, Kilic SS, Aytekin C et al (2015) DOCK8 deficiency: clinical and immunological phenotype and treatment options — a review of 136 patients. J Clin Immunol 35:189–198

    Article  CAS  PubMed  Google Scholar 

  60. Biggs CM, Keles S, Chatila TA (2017) DOCK8 deficiency: insights into pathophysiology, clinical features and management. Clin Immunol 181:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Su HC (2010) DOCK8 (dedicator of cytokinesis 8) deficiency. Curr Opin Allergy Clin Immunol 10:515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Engelhardt KR, Gertz ME, Keles S et al (2015) The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol 136:402–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Engelhardt KR, McGhee S, Winkler S et al (2009) Large deletions and point mutations involving DOCK8 in the autosomal recessive form of the hyper-IgE syndrome. J Allergy Clin Immunol 124:1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Q, Davis JC, Lamborn IT et al (2009) Combined immunodeficiency associated with DOCK8 mutations. New Engl J Med 361:2046–2055

    Article  CAS  PubMed  Google Scholar 

  65. Lee EY, Vargas SO, Gaffin JM et al (2021) Thoracic multidetector computed tomography findings of dedicator of cytokinesis 8 deficiency in children. J Thorac Imaging 36:304–309

    Article  PubMed  Google Scholar 

  66. London WB, Castleberry RP, Matthay KK et al (2005) Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 23:6459–6465

    Article  CAS  PubMed  Google Scholar 

  67. Scherer A, Niehues T, Engelbrecht V, Mödder U (2001) Imaging diagnosis of retroperitoneal ganglioneuroma in childhood. Pediatr Radiol 31:106–110

    Article  CAS  PubMed  Google Scholar 

  68. Vik TA, Pfluger T, Kadota R et al (2009) (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer 52:784–790

    Article  PubMed  Google Scholar 

  69. Geoerger B, Hero B, Harms D et al (2001) Metabolic activity and clinical features of primary ganglioneuromas. Cancer 91:1905–1913

    Article  CAS  PubMed  Google Scholar 

  70. Woo OH, Yong HS, Shin BK et al (2008) Wide spectrum of thoracic neurogenic tumours: a pictorial review of CT and pathological findings. Br J Radiol 81:668–676

    Article  CAS  PubMed  Google Scholar 

  71. Singh AK, Sargar K, Restrepo CS (2016) Pediatric mediastinal tumors and tumor-like lesions. Semin Ultrasound CT MR 37:223–237

    Article  PubMed  Google Scholar 

  72. Franco A, Mody NS, Meza MP (2005) Imaging evaluation of pediatric mediastinal masses. Radiol Clin N Am 43:325–353

    Article  PubMed  Google Scholar 

  73. Subhawong TK, Fishman EK, Swart JE et al (2010) Soft-tissue masses and masslike conditions: what does CT add to diagnosis and management? AJR Am J Roentgenol 194:1559–1567

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bhargava R, Parham DM, Lasater OE et al (1997) MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol 27:124–129

    Article  CAS  PubMed  Google Scholar 

  75. Bredella MA, Torriani M, Hornicek F et al (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol 189:928–935

    Article  PubMed  Google Scholar 

  76. Roberts AS, Shetty AS, Mellnick VM et al (2016) Extramedullary haematopoiesis: radiological imaging features. Clin Radiol 71:807–814

    Article  CAS  PubMed  Google Scholar 

  77. Sohawon D, Lau KK, Lau T, Bowden DK (2012) Extra-medullary haematopoiesis: a pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol 56:538–544

    Article  PubMed  Google Scholar 

Download references

Funding

Mark C. Liszewski is the recipient of grant funding for an unrelated study from Carestream Health, Inc., is an unpaid member of the Carestream Health Medical Advisory Board and is the recipient of meal and travel support from Carestream Health. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Y. Lee.

Ethics declarations

Conflicts of interest

Mark C. Liszewski is the recipient of grant funding for an unrelated study from Carestream Health, Inc., is an unpaid member of the Carestream Health Medical Advisory Board and is the recipient of meal and travel support from Carestream Health. The other authors have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, N.H., Shashi, K.K., Winant, A.J. et al. Imaging evaluation of the pediatric mediastinum: new International Thymic Malignancy Interest Group classification system for children. Pediatr Radiol 52, 1948–1962 (2022). https://doi.org/10.1007/s00247-022-05361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05361-3

Keywords

Navigation