Skip to main content
Log in

Radiation dose reduction for chest radiography of infants in intensive care units using a high peak kilovoltage-technique

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Chest radiography is an important tool in the care of infants in intensive care units. Image optimization must be monitored to minimize radiation exposure in this susceptible population.

Objective

To examine the use of a high tube peak kilovoltage technique to achieve radiation dose reduction while maintaining adequate image quality.

Materials and methods

A retrospective study was conducted. Radiation doses of chest radiographs performed in the pediatric intensive care units in our institution were calculated. The radiographs were divided into two groups based on the value of the peak kilovoltage used: above and below 60 kilovolts (kV). Image quality was blindly assessed by two fellowship-trained pediatric radiologists. Air kerma, effective dose and quality score for the high versus the low peak kilovoltage group were compared and analyzed.

Results

The study included 376 radiographs. One hundred and seven radiographs were performed using peak kilovoltage values equal to or above 60 kV and 269 radiographs were performed using values under 60 kV. The average air kerma for the lower peak kilovoltage group was 56.6 microgray (µGy) (30.7–81.9) vs. 22.9 µGy (11.8–34.4) for the higher peak kilovoltage group (P<0.0001). The mean difference in effective dose between the groups was 11.68 (P<0.0001). The mean difference for the quality score was 0.06 (±0.03, P=0.10), not statistically significant.

Conclusion

A high peak kilovoltage technique may enable a statistically significant radiation dose reduction without compromising the diagnostic value of the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aramesh M, Zanganeh KA, Dehdashtian M et al (2017) Evaluation of radiation dose received by premature neonates admitted to neonatal intensive care unit. J Clin Med Res 9:124–129

    Article  PubMed  Google Scholar 

  2. Pedrosa de Azevedo AC, Bastos Boechat MC, Osibote AO (2006) Survey of doses and frequency of X-ray examinations on children at the intensive care unit of a large reference pediatric hospital. Appl Radiat Isot 64:1637–1642

    Article  CAS  PubMed  Google Scholar 

  3. Puch-Kapst K, Juran R, Stoever B, Wauer RR (2009) Radiation exposure in 212 very low and extremely low birth weight infants. Pediatrics 124:1556–1564

    Article  PubMed  Google Scholar 

  4. Donadieu J, Zeghnoun A, Roudier C et al (2006) Cumulative effective doses delivered by radiographs to preterm infants in a neonatal intensive care unit. Pediatrics 117:882–888

    Article  PubMed  Google Scholar 

  5. Arad I, Simanovsky N, Braunstein R (2009) Exposure of extremely low birth weight infants to diagnostic X-Rays: a longitudinal study. Acta Paediatr 98:266–269

    Article  PubMed  Google Scholar 

  6. Armpilia CI, Fife IAJ, Croasdale PL (2002) Radiation dose quantities and risk in neonates in a special care baby unit. Br J Radiol 75:590–595

    Article  CAS  PubMed  Google Scholar 

  7. Prasad KN (1995) Handbook of radiobiology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Huang R, Liu X, He L, Zhou PK (2020) Radiation exposure associated with computed tomography in childhood and the subsequent risk of cancer: a meta-analysis of cohort studies. Dose Response 18:1559325820923828

    PubMed  PubMed Central  Google Scholar 

  9. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81:362–378

    Article  CAS  PubMed  Google Scholar 

  11. Ann ICRP (2007) The 2007 Recommendations of the International Commision on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332

    Google Scholar 

  12. Compagnone G, Baleni MC, Pagan L et al (2006) Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional scree-film radiography, computed radiography and direct digital radiography. Br J Radiol 79:899–904

    Article  CAS  PubMed  Google Scholar 

  13. Willis CE (2009) Optimizing digital radiography of children. Eur J Radiol 72:266–273

    Article  PubMed  Google Scholar 

  14. Precht H, Gerke O, Rosendahl K et al (2012) Digital radiography: Optimization of image quality and dose using multi-frequency software. Pediatr Radiol 42:1112–1118

    Article  CAS  PubMed  Google Scholar 

  15. Dougeni ED, Delis HB, Karatza AA et al (2007) Dose and image quality optimization in neonatal radiography. Br J Radiol 80:807–815

    Article  CAS  PubMed  Google Scholar 

  16. Ramanaidu S, Sta Maria RB, Ng K et al (2006) Evaluation of radiation dose and image quality following changes to tube potential (kVp) in conventional paediatric chest radiography. Biomed Imaging Interv J 2:e35

  17. Duggan L, Warren-Forward H, Smith T, Kron T (2003) Investigation of dose reduction in neonatal radiography using specially designed phantoms and LiF:Mg, Cu, P TLDs. Br J Radiol 76:232–237

    Article  CAS  PubMed  Google Scholar 

  18. Bahreyni Toossi MT, Malekzadeh M (2012) Radiation dose to newborns in neonatal intensive care units. Iran J Radiol 9:145–149

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hansson J, Båth M, Håkansson M et al (2005) An optimisation strategy in a digital environment applied to neonatal chest imaging. Radiat Prot Dosimetry 114:278–285

    Article  PubMed  Google Scholar 

  20. Wrixon AD (2008) New ICRP recommendations J Radiol Prot 28:161–168

    Article  CAS  PubMed  Google Scholar 

  21. Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647

    Article  CAS  PubMed  Google Scholar 

  22. Jones A, Ansell C, Jerrom C, Honey ID (2015) Optimization of image quality and patient dose in radiographs of paediatric extremities using direct digital radiography. Br J Radiol 88:20140660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huda W (2004) Assessment of the problem: Pediatric doses in screen-film and digital radiography. Pediatr Radiol 34:173–182

    Article  Google Scholar 

  24. International Atomic Energy Agency (2013) Dosimetry in diagnostic radiology for paediatric patients. IAEA Human Health Series No. 24, Vienna

  25. Makri T, Yakoumakis E, Papadopoulou D et al (2006) Radiation risk assessment in neonatal radiographic examinations of the chest and abdomen: a clinical and Monte Carlo dosimetry study. Phys Med Biol 51:5023–5033

    Article  CAS  PubMed  Google Scholar 

  26. Werner A, Isdale JM (1986) Radiation hazards in a paediatric intensive care unit. Pediatr Radiol 16:275–277

    Article  CAS  PubMed  Google Scholar 

  27. Alsleem H, Davidson R, Al-Dhafiri B et al (2019) Evaluation of radiographers’ knowledge and attitudes of image quality optimisation in paediatric digital radiography in Saudi Arabia and Australia: a survey-based study. J Med Radiat Sci 66:229–237

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cohen MD, Markowitz R, Hill J et al (2012) Quality assurance: a comparison study of radiographic exposure for neonatal chest radiographs at 4 academic hospitals. Pediatr Radiol 42:668–673

    Article  PubMed  Google Scholar 

  29. Carmichael J, Maccia C, Moores B et al (2000) European guidelines on quality criteria for diagnostic radiographic images. EU publication EUR 16260 https://www.sprmn.pt/pdf/EuropeanGuidelineseur16260.pdf. Accessed 15 July 2020

  30. Schäfer SB, Papst S, Fiebich M et al (2020) Modification of chest radiography exposure parameters using a neonatal chest phantom. Pediatr Radiol 50:28–37

    Article  PubMed  Google Scholar 

  31. Doherty P, O’Leary D, Brennan PC (2003) Do CEC guidelines under-utilise the full potential of increasing kVp as a dose-reducing tool? Eur Radiol 13:1992–1999

    Article  CAS  PubMed  Google Scholar 

  32. Tapiovaara M, Siiskonen T (2008) A Monte Carlo program for calculating patient doses in medical x-ray examinations, 2nd edn. STUK-A231, Helsinki

  33. Khelassi-Toutaoui N, Berkani Y, Tsapaki V et al (2008) Experimental evaluation of PCXMC and prepare codes used in conventional radiology. Radiat Prot Dosimetry 131:374–378

    Article  CAS  PubMed  Google Scholar 

  34. Ma H, Elbakri IA, Reed M (2013) Estimation of organ and effective doses from newborn radiography of the chest and abdomen. Radiat Prot Dosimetry 156:160–167

    Article  PubMed  Google Scholar 

  35. Ben-Shlomo A, Bartal G, Shabat S, Mosseri M (2013) Effective dose and breast dose reduction in paediatric scoliosis X-ray radiography by an optimal positioning. Radiat Prot Dosimetry 156:30–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tali Bdolah-Abram for her valuable assistance in study design and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Yahav-Dovrat.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahav-Dovrat, A., Elbakri, I., Rozovsky, K. et al. Radiation dose reduction for chest radiography of infants in intensive care units using a high peak kilovoltage-technique. Pediatr Radiol 52, 874–882 (2022). https://doi.org/10.1007/s00247-021-05262-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05262-x

Keywords

Navigation