Abstract
Background
Ultrasound elastography has been suggested for assessing organ fibrosis.
Objective
To study the feasibility of shear-wave elastography in children with kidney disease and the correlation between elasticity and kidney fibrosis in order to reduce the indications for kidney biopsy and its complications.
Materials and methods
Four operators measured kidney elasticity in children with kidney diseases or transplants, all of whom also had a renal biopsy. We assessed the feasibility and the intraobserver variability of the elasticity measurements for each probe used and each kidney explored. Then we tested the correlation between elasticity measurements and the presence of fibrosis.
Results
Overall, we analyzed 95 children and adolescents, 31 of whom had renal transplant. Measurements with the convex probe were possible in 100% of cases. Linear probe analysis was only possible for 20% of native kidneys and 50% of transplants. Intraobserver variabilities ranged from moderate to high, depending on the probe and kidney studied. Elasticity was higher with the linear probe than with the convex probe (P<0.001 for left kidney and P=0.03 for right kidney). Measurements did not differ from one kidney to another in the same child. Elasticity and fibrosis were both higher in transplant patients (P=0.02 with convex probe; P=0.01 with linear probe; P=0.04 overall). There was no correlation between elasticity and fibrosis.
Conclusion
Of the devices used in this work, kidney elastography was more accurately analyzed with a convex probe. Our study did not identify any correlation between elasticity and kidney fibrosis.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
European Association for Study of Liver, Asociacion Latinoamericana para el Estudio del Higado (2015) EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 63:237–264
Barr RG, Ferraioli G, Palmeri ML et al (2015) Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound consensus conference statement. Radiology 276:845–861
Ferraioli G, Filice C, Castera L et al (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: part 3: liver. Ultrasound Med Biol 41:1161–1179
Pariente D, Franchi-Abella S (2010) Paediatric chronic liver diseases: how to investigate and follow up? Role of imaging in the diagnosis of fibrosis. Pediatr Radiol 40:906–919
Franchi-Abella S, Corno L, Gonzales E et al (2015) Feasibility and diagnostic accuracy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology 278:554–562
Kotlyar DS, Blonski W, Rustgi VK (2008) Noninvasive monitoring of hepatitis C fibrosis progression. Clin Liver Dis 12:557–571
Chen S, Liao B, Zhong Z et al (2016) Supersonic shearwave elastography in the assessment of liver fibrosis for postoperative patients with biliary atresia. Sci Rep 6:31057
Peride I, Rădulescu D, Niculae A et al (2016) Value of ultrasound elastography in the diagnosis of native kidney fibrosis. Med Ultrason 18:362–369
Wang L (2016) Applications of acoustic radiation force impulse quantification in chronic kidney disease: a review. Ultrasonography 35:302–308
Yoo MG, Jung DC, Oh YT et al (2017) Usefulness of multiparametric ultrasound for evaluating structural abnormality of transplanted kidney: can we predict histologic abnormality on renal biopsy in advance? AJR Am J Roentgenol 209:139–144
Grenier N, Poulain S, Lepreux S et al (2012) Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 22:2138–2146
Stock KF, Klein BS, Cong MT et al (2011) ARFI-based tissue elasticity quantification and kidney graft dysfunction: first clinical experiences. Clin Hemorheol Microcirc 49:527–535
Arndt R, Schmidt S, Loddenkemper C et al (2010) Noninvasive evaluation of renal allograft fibrosis by transient elastography — a pilot study. Transpl Int 23:871–877
Ghonge NP, Mohan M, Kashyap V, Jasuja S (2018) Renal allograft dysfunction: evaluation with shear-wave sonoelastography. Radiology 288:146–152
Ma MK, Law HK, Tse KS et al (2018) Non-invasive assessment of kidney allograft fibrosis with shear wave elastography: a radiological–pathological correlation analysis. Int J Urol 25:450–455
Chiocchini ALC, Sportoletti C, Comai G et al (2017) Correlation between renal cortical stiffness and histological determinants by point shear-wave elastography in patients with kidney transplantation. Prog Transplant 27:346–353
Kim BJ, Kim CK, Park JJ (2018) Non-invasive evaluation of stable renal allograft function using point shear-wave elastography. Br J Radiol 91:20170372
Lee J, Oh YT, Joo DJ et al (2015) Acoustic radiation force impulse measurement in renal transplantation. A prospective, longitudinal study with protocol biopsies. Medicine 94:e1590
He WY, Jin YJ, Wang WP et al (2014) Tissue elasticity quantification by acoustic radiation force impulse for the assessment of renal allograft function. Ultrasound Med Biol 40:322–329
Early HM, Cheang EC, Aguilera JM et al (2018) Utility of shear wave elastography for assessing allograft fibrosis in renal transplant recipients: a pilot study. J Ultrasound Med 37:1455–1465
Syversveen T, Brabrand K, Midtvedt K et al (2010) Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification — a pilot study. Transplant Int 24:100–105
Radulescu D, Peride I, Petcu LC et al (2018) Supersonic shear wave ultrasonography for assessing tissue stiffness in native kidney. Ultrasound Med Biol 44:2556–2568
Habibi HA, Cicek RY, Kandemirli SG et al (2017) Acoustic radiation force impulse (ARFI) elastography in the evaluation of renal parenchymal stiffness in patients with ureteropelvic junction obstruction. J Medic Ultrason 44:167–172
Sohn B, Kim MJ, Han SW et al (2014) Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys. Ultrasonography 33:116–121
Gennisson JL, Grenier N, Combe C, Tanter M (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38:1559–1567
Derieppe M, Delmas Y, Gennisson J-L et al (2012) Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol 22:243–250
Liu X, Li N, Xu T et al (2012) Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol 22:243–250
Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409
Grenier N, Gennisson JL, Cornelis F et al (2013) Renal ultrasound elastography. Diagn Interv Imaging 94:545–550
Bruno C, Minniti S, Bucci A et al (2016) ARFI: from basic principles to clinical applications in diffuse chronic disease. Insights Imaging 7:735–746
Correas JM, Anglicheau D, Gennisson JL, Tanter M (2016) Renal elastography. Nephrol Therap 12:S25–S34
Grass L, Szekely N, Alrajab A et al (2017) Point shear wave elastography (pSWE) using acoustic radiation force impulse (ARFI) imaging: a feasibility study and norm values for renal parenchymal stiffness in healthy children and adolescents. Med Ultrason 19:366–373
Lee MJ, Kim MJ, Han KH, Yoon CS (2013) Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging. Eur J Radiol 82:e290–e294
Franchi-Abella S, Elie C, Correas JM (2013) Ultrasound elastography: advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagn Interv Imaging 94:497–501
Chang S, Kim MJ, Kim J, Lee MJ (2013) Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study. Ultraschall Med 34:260–265
Göya C, Hamidi C, Ece A et al (2015) Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children. Pediatr Radiol 45:55–61
Saglam D, Bilgici MC, Kara C et al (2017) Acoustic radiation force impulse elastography in determining the effects of type 1 diabetes on pancreas and kidney elasticity in children. AJR Am J Roentgenol 209:1143–1149
Bota S, Bob F, Sporea I et al (2015) Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology. Ultrasound Med Biol 41:1–6
Asano K, Ogata A, Tanaka K et al (2014) Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med 33:793–801
Guo L-H, Xu H-X, Fu H-J et al (2013) Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One 8:e68925
Singh H, Biju Panta O, Khanal U, Kumar Ghimire R (2017) Renal cortical elastography: normal values and variations. J Med Ultrasound 25:215–220
Bob F, Bota S, Sporea I et al (2014) Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI) — preliminary results. PLoS One 9:e113761
Bota S, Sporea I, Sirli R et al (2012) Intra- and interoperator reproducibility of acoustic radiation force impulse (ARFI) elastography — preliminary results. Ultrasound Med Biol 38:1103–1108
Dillman JR, Smith EA, Davenport MS et al (2015) Can shear-wave elastography be used to discriminate obstructive hydronephrosis from nonobstructive hydronephrosis in children? Radiology 277:259–267
Bruno C, Caliari G, Zaffanello M et al (2013) Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in paediatric patients with vesicoureteral reflux: preliminary results. Eur Radiol 23:3477–3484
Kalyoncu Ucar A, Cicek RY, Alis D et al (2019) Shear wave elastography in the evaluation of the kidneys in pediatric patients with unilateral vesicoureteral reflux. J Ultrasound Med 38:379–385
Xu B, Jiang G, Ye J et al (2016) Research on pediatric glomerular disease and normal kidney with shear wave based elastography point quantification. Jpn J Radiol 34:738–746
Bilgici MC, Bekci T, Genc G et al (2017) Acoustic radiation force impulse quantification in the evaluation of renal parenchyma elasticity in pediatric patients with chronic kidney disease: preliminary results. J Ultrasound Med 36:1555–1561
Goya C, Kilinc F, Hamidi C et al (2015) Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy. AJR Am J Roentgenol 204:324–329
Samir AE, Allegretti AS, Zhu Q et al (2015) Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol 16:119
el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O (1997) Renal fibrosis: insights into pathogenesis treatment. Int J Biochem Cell Biol 29:55–62
Urban MW, Chen S, Fatemi M (2012) A review of shearwave dispersion ultrasound vibrometry (SDUV) and its applications. Med Imaging Rev 8:27–36
Chen S, Sanchez W, Callstrom MR et al (2013) Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology 266:964–970
Warner L, Yin M, Glaser KJ et al (2011) Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46:509–514
Syversveen T, Midtvedt K, Berstad AE et al (2012) Tissue elasticity estimated by acoustic radiation force impulse quantification depends on the applied transducer force: an experimental study in kidney transplant patients. Eur Radiol 10:2130–2137
Gennisson J-L, Renier M, Catheline S et al (2007) Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am 122:3211–3219
Naesens M, Kuypers DRJ, De Vusser K et al (2014) The histology of kidney transplant failure: a long-term follow-up study. Transplantation 98:427–435
Dillman JR, Chen S, Davenport MS et al (2015) Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems. Pediatr Radiol 45:376–385
Acknowledgments
The study was funded by Assistance Publique Hôpitaux de Marseille (Délégation de la Recherche Clinique et Innovation-Unité Coordination et Contrôle Qualité).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
None
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Desvignes, C., Dabadie, A., Aschero, A. et al. Technical feasibility and correlations between shear-wave elastography and histology in kidney fibrosis in children. Pediatr Radiol 51, 1879–1888 (2021). https://doi.org/10.1007/s00247-021-05068-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00247-021-05068-x