Skip to main content
Log in

Imaging of open spinal dysraphisms in the era of prenatal surgery

  • Fetal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Over the last decade fetal surgery to repair open spinal dysraphisms has become an acceptable and in some cases desirable alternative to the traditional method of postnatal closure. Fetal MRI is an essential part of the workup in these patients, not only to select the appropriate candidates for fetal surgery but also to guide prenatal counseling and perinatal management. In this article we review current surgical techniques for prenatal repair, relevant imaging findings in the era of fetal surgery, and expected imaging findings of the brain and spine in the fetal and postnatal periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  PubMed  Google Scholar 

  2. Rufener SL, Ibrahim M, Raybaud CA, Parmar HA (2010) Congenital spine and spinal cord malformations — pictorial review. AJR Am J Roentgenol 194:26–37

    Article  Google Scholar 

  3. Nagaraj UD, Bierbrauer KS, Peiro JL, Kline-Fath BM (2016) Differentiating closed versus open spinal dysraphisms on fetal MRI. AJR Am J Roentgenol 207:1316–1323

    Article  PubMed  Google Scholar 

  4. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. el Gammal T, Mark EK, Brooks BS (1988) MR imaging of Chiari II malformation. AJR Am J Roentgenol 150:163–170

    Article  PubMed  Google Scholar 

  6. Blumenfeld Z, Siegler E, Bronshtein M (1993) The early diagnosis of neural tube defects. Prenat Diagn 13:851–861

    Article  PubMed  Google Scholar 

  7. Driscoll DA, Gross SJ (2009) Screening for fetal aneuploidy and neural tube defects. Genet Med 11:818–821

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roman AS, Gupta S, Fox NS et al (2015) Is MSAFP still a useful test for detecting open neural tube defects and ventral wall defects in the era of first-trimester and early second-trimester fetal anatomical ultrasounds? Fetal Diagn Ther 37:206–210

    Article  PubMed  Google Scholar 

  9. Adzick NS (2012) Fetal surgery for myelomeningocele: trials and tribulations. Isabella Forshall Lecture. J Pediatr Surg 47:273–281

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luthy D, Wardinsky T, Shurtleff DB et al (1991) Cesarean section before the onset of labor and sebsequent motor function in infants with meningomyelocele diagnosed antenatally. N Engl J Med 324:662–666

    Article  CAS  PubMed  Google Scholar 

  11. Committee on Obstetric Practice, Society for Maternal-Fetal Medicine (2017) Maternal-fetal surgery for myelomeningocele. Obstet Gynecol 130:164–167

    Article  Google Scholar 

  12. Sutton LN (2008) Fetal surgery for neural tube defects. Best Pract Res Clin Obstet Gynaecol 22:175–188

    Article  PubMed  Google Scholar 

  13. Bennett KA, Carroll MA, Shannon CN et al (2014) Reducing perinatal complications and preterm delivery for patients undergoing in utero closure of fetal myelomeningocele: further modifications to the multidisciplinary surgical technique. J Neurosurg Pediatr 14:108–114

    Article  PubMed  Google Scholar 

  14. Bruner JP, Richards WO, Tulipan NB, Arney TL (1999) Endoscopic coverage of fetal myelomeningocele in utero. Am J Obstet Gynecol 180:153–158

    Article  CAS  PubMed  Google Scholar 

  15. Sanz Cortes M, Lapa DA, Acacio GL et al (2019) Proceedings of the first annual meeting of the International Fetoscopic Myelomeningocele Repair Consortium. Ultrasound Obstet Gynecol 53:855–863

    Article  CAS  PubMed  Google Scholar 

  16. Kabagambe SK, Jensen GW, Chen YJ et al (2018) Fetal surgery for myelomeningocele: a systematic review and meta-analysis of outcomes in fetoscopic versus open repair. Fetal Diagn Ther 43:161–174

    Article  PubMed  Google Scholar 

  17. Tatu R, Oria M, Pulliam S et al (2019) Using poly(l-lactic acid) and poly(ɛ-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair. J Biomed Mater Res B Appl Biomater 107:295–305

    Article  CAS  PubMed  Google Scholar 

  18. Belfort MA, Whitehead WE, Shamshirsaz AA et al (2017) Fetoscopic open neural tube defect repair: development and refinement of a two-port, carbon dioxide insufflation technique. Obstet Gynecol 129:734–743

    Article  CAS  PubMed  Google Scholar 

  19. Peiro JL, Fontecha CG, Ruano R et al (2013) Single-access fetal endoscopy (SAFE) for myelomeningocele in sheep model I: amniotic carbon dioxide gas approach. Surg Endosc 27:3835–3840

    Article  PubMed  Google Scholar 

  20. Behr SC, Jesse BL, Qayyum A (2012) Imaging of müllerian duct anomalies. Radiographics 32:E233–E250

    Article  PubMed  Google Scholar 

  21. Sutton LN, Adzick NS, Bilaniuk LT et al (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. J Am Med Assoc 282:1826–1831

    Article  CAS  Google Scholar 

  22. Nagaraj UD, Bierbrauer KS, Stevenson CB et al (2018) Spinal imaging findings of open spinal dysraphisms on fetal and postnatal MRI. AJNR Am J Neuroradiol 39:1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coleman BG, Langer JE, Horii SC (2015) The diagnostic features of spina bifida: the role of ultrasound. Fetal Diagn Ther 37:179–196

    Article  PubMed  Google Scholar 

  24. McEwing RL, Pretorius DH, James HE, Daneshmand S (2005) Prenatal assignation of lesion levels in neural tube defects by using ultrasonography. Case report and review of the literature. J Neurosurg 102:248–251

    Article  PubMed  Google Scholar 

  25. Aaronson OS, Hernanz-Schulman M, Bruner JP et al (2003) Myelomeningocele: prenatal evaluation — comparison between transabdominal US and MR imaging. Radiology 227:839–843

    Article  PubMed  Google Scholar 

  26. Nagaraj UD, Bierbrauer KS, Stevenson CB et al (2020) Pre- and postnatal MRI findings in open spinal dysraphism following intrauterine repair via open versus fetoscopic surgical techniques. Prenat Diagn 40:49–57

    Article  PubMed  Google Scholar 

  27. Robinson AJ, Blaser S, Vladimirov A et al (2015) Foetal ‘black bone’ MRI: utility in assessment of the foetal spine. Br J Radiol 88:1–6

    Article  Google Scholar 

  28. Nguyen HT, Benson CB, Bromley B et al (2014) Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilation (UTD classification system). J Pediatr Urol 10:982–998

    Article  PubMed  Google Scholar 

  29. Rubio EI, Blask AR, Badillo AT, Bulas DI (2017) Prenatal magnetic resonance and ultrasonographic findings in small-bowel obstruction: imaging clues and postnatal outcomes. Pediatr Radiol 47:411–421

    Article  PubMed  Google Scholar 

  30. Veyrac C, Couture A, Saguintaah M, Baud C (2004) MRI of fetal GI tract abnormalities. Abdom Imaging 29:411–420

    Article  CAS  PubMed  Google Scholar 

  31. Nagaraj UD, Calvo-Garcia MA, Merrow AC et al (2018) Decreased rectal meconium signal on MRI in fetuses with open spinal dysraphism. Prenat Diagn 38:870–875

    Article  PubMed  Google Scholar 

  32. Van den Hof MC, Nicolaides KH, Campbell J, Campbell S (1990) Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 162:322–327

    Article  PubMed  Google Scholar 

  33. Campbell J, Gilbert W, Nicolaides K, Campbell S (1987) Ultrasound screening for spina bifida: cranial and cerebellar signs in a high-risk population. Obstet Gynecol 70:247–250

    CAS  PubMed  Google Scholar 

  34. Thiagarajah S, Henke J, Hogge W et al (1990) Early diagnosis of spina bifida: the value of cranial ultrasound markers. Obstet Gynecol 76:54–57

    CAS  PubMed  Google Scholar 

  35. Hadlock F, Deter R, Carpenter R, Park SK (1981) Estimating fetal age: effect of head shape on BPD. AJR Am J Roentgenol 137:83–85

    Article  CAS  PubMed  Google Scholar 

  36. Tulipan N, Wellons JC III, Thom EA et al (2015) Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. Neurosurg Pediatr 16:613–620

    Article  Google Scholar 

  37. Heuer GG, Adzick NS, Sutton LN (2015) Fetal myelomeningocele closure: technical considerations. Fetal Diagn Ther 37:166–171

    Article  PubMed  Google Scholar 

  38. Budorick NE, Pretorius DH, Grafe MR, Lour KV (1991) Ossification of the fetal spine. Radiology 181:561–565

    Article  CAS  PubMed  Google Scholar 

  39. Leung KY, Ngai CS, Chan BC et al (2005) Three-dimensional extended imaging: a new display modality for three-dimensional ultrasound examination. Ultrasound Obstet Gynecol 26:244–251

    Article  CAS  PubMed  Google Scholar 

  40. Westcott MA, Dynes MC, Remer EM et al (1992) Congenital and acquired orthopedic abnormalities in patients with myelomeningocele. Radiographics 12:1155–1173

    Article  CAS  PubMed  Google Scholar 

  41. Carreras E, Maroto A, Illescas T et al (2016) Prenatal ultrasound evaluation of segmental level of neurological lesion in fetuses with myelomeningocele: development of a new technique. Ultrasound Obstet Gynecol 47:162–167

    Article  CAS  PubMed  Google Scholar 

  42. Nagaraj UD, Bierbrauer KS, Zhang B et al (2017) Hindbrain herniation in Chiari II malformation on fetal and postnatal MRI. AJNR Am J Neuroradiol 38:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rethmann C, Scheer I, Meuli M et al (2017) Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI. Eur Radiol 27:4571–4580

    Article  PubMed  Google Scholar 

  44. Nagaraj UD, Peiro JL, Bierbrauer KS, Kline-Fath BM (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagaraj UN, Bierbrauer KS, Stevenson CB et al (2018) Myelomeningocele versus myelocele on fetal MR images: are there differences in brain findings? AJR Am J Roentgenol 211:1376–1380

    Article  PubMed  Google Scholar 

  46. Cherian J, Staggers KA, Pan IW et al (2018) Thirty-day outcomes after postnatal myelomeningocele repair: a National Surgical Quality Improvement Program pediatric database analysis. J Neurosurg Pediatr 18:416–422

    Article  Google Scholar 

  47. Chao TT, Dashe JS, Adams RC et al (2011) Fetal spine findings on MRI and associated outcomes in children with open neural tube defects. AJR Am J Roentgenol 197:956–961

    Article  Google Scholar 

  48. Ansari S, Nejat F, Yazdani S, Dadmehr M (2007) Split cord malformation associated with myelomeningocele. J Neurosurg 107:281–285

    Article  PubMed  Google Scholar 

  49. Iskandar B, Mclaughlin C, Oakes W (2000) Split cord malformations in myelomeningocele patients. Br J Neurosurg 14:200–203

    Article  CAS  PubMed  Google Scholar 

  50. Levine DN (2004) The pathogenesis of syringomyelia associated with lesions at the foramen magnum: a critical review of existing theories and proposal of a new hypothesis. J Neurol Sci 220:3–21

    Article  PubMed  Google Scholar 

  51. Bixenmann B, Kline-Fath BM, Bierbrauer KS, Bansal D (2014) Prenatal and postnatal evaluation for syringomyelia in patients with spinal dysraphism. J Neurosurg Pediatr 14:316–321

    Article  PubMed  Google Scholar 

  52. Hino-Shishikura A, Niwa T, Aida N et al (2012) Periventricular nodular heterotopia is related to severity of the hindbrain deformity in Chiari II malformation. Pediatr Radiol 42:1212–1217

    Article  PubMed  Google Scholar 

  53. Cortes S, Torres P, Yepez M et al (2020) Comparison of brain microstructure after prenatal spina bifida repair by either laparotomy assisted fetoscopic or open approach. Ultrasound Obstet Gynecol 55:87–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha D. Nagaraj.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, U.D., Kline-Fath, B.M. Imaging of open spinal dysraphisms in the era of prenatal surgery. Pediatr Radiol 50, 1988–1998 (2020). https://doi.org/10.1007/s00247-020-04734-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04734-w

Keywords

Navigation