Skip to main content

Advertisement

Log in

Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The use of MRI in forensic age estimation has been explored extensively during the last decade. The authors of this paper synthesized the available MRI data for forensic age estimation in living children and young adults to provide a comprehensive overview that can guide age estimation practice and future research. To do so, the authors searched MEDLINE, Embase and Web of Science, along with cited and citing articles and study registers. Two authors independently selected articles, conducted data extraction, and assessed risk of bias. They considered study populations including living subjects up to 30 years old. Fifty-five studies were included in qualitative analysis and 33 in quantitative analysis. Most studies had biases including use of relatively small European (Caucasian) populations, varying MR approaches and varying staging techniques. Therefore, it was not appropriate to pool the age distribution data. The authors found that reproducibility of staging was remarkably lower in clavicles than in any other anatomical structure. Age estimation performance was in line with the gold standard, radiography, with mean absolute errors ranging from 0.85 years to 2.0 years. The proportion of correctly classified minors ranged from 65% to 91%. Multifactorial age estimation performed better than that based on a single anatomical site. The authors found that more multifactorial age estimation studies are necessary, together with studies testing whether the MRI data can safely be pooled. The current review results can guide future studies, help medical professionals to decide on the preferred approach for specific cases, and help judicial professionals to interpret the evidential value of age estimation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165:178–181

    CAS  PubMed  Google Scholar 

  2. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52

    PubMed  Google Scholar 

  3. Thevissen PW, Kvaal SI, Dierickx K, Willems G (2012) Ethics in age estimation of unaccompanied minors. J Forensic Odontostomatol 30:84–102

    PubMed  Google Scholar 

  4. Lockemann U, Fuhrmann A, Püschel K et al (2004) Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin. Rechtsmedizin 14:123–126

  5. Gustafson G, Koch G (1974) Age estimation up to 16 years of age based on dental development. Odontol Revy 25:297–306

    CAS  PubMed  Google Scholar 

  6. Mostad P, Tamsen F (2019) Error rates for unvalidated medical age assessment procedures. Int J Legal Med 133:613–623

    PubMed  Google Scholar 

  7. Higgins JPT, Thomas J, Chandler J et al (eds) (2019) Cochrane handbook for systematic reviews of interventions version 6.0. https://training.cochrane.org/handbook/current. Accessed 24 April 2020

  8. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    PubMed  PubMed Central  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    PubMed  PubMed Central  Google Scholar 

  10. Cunha E, Baccino E, Martrille L et al (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13

    CAS  PubMed  Google Scholar 

  11. Solheim T (1993) A new method for dental age estimation in adults. Forensic Sci Int 59:137–147

    CAS  PubMed  Google Scholar 

  12. Ruder TD, Hatch GM, Siegenthaler L et al (2012) The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol 81:1366–1370

    PubMed  Google Scholar 

  13. De Tobel J, van Wijk M, Alberink I et al (2020) The influence of motion artifacts on magnetic resonance imaging of the clavicles for age estimation. Int J Legal Med 134:753–768

    PubMed  Google Scholar 

  14. Vieth V, Kellinghaus M, Schulz R et al (2010) Ossification stage of the medial clavicular epiphysis: comparison of projectional radiography, computed tomography and magnetic resonance imaging. Rechtsmedizin 20:483–488

    Google Scholar 

  15. De Tobel J, Parmentier GIL, Phlypo I et al (2019) Magnetic resonance imaging of third molars in forensic age estimation: comparison of the Ghent and Graz protocols focusing on apical closure. Int J Legal Med 133:583–592

    PubMed  Google Scholar 

  16. Fan F, Zhang K, Peng Z et al (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Sci Int 268:145–150

    PubMed  Google Scholar 

  17. Hillewig E, De Tobel J, Cuche O et al (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767

    PubMed  Google Scholar 

  18. Tangmose S, Jensen KE, Lynnerup N (2013) Comparative study on developmental stages of the clavicle by postmortem MRI and CT imaging. J Forensic Radiol Imaging 1:102–106

    Google Scholar 

  19. Urschler M, Krauskopf A, Widek T et al (2016) Applicability of Greulich-Pyle and Tanner-Whitehouse grading methods to MRI when assessing hand bone age in forensic age estimation: a pilot study. Forensic Sci Int 266:281–288

    PubMed  Google Scholar 

  20. Cochrane Effective Practice and Organisation of Care (EPOC) (2017) EPOC resources for review authors. https://epoc.cochrane.org/resources/epoc-resources-review-authors. Accessed 24 April 2020

  21. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    PubMed  Google Scholar 

  22. Harcke HT, Synder M, Caro PA, Bowen JR (1992) Growth plate of the normal knee: evaluation with MR imaging. Radiology 183:119–123

    CAS  PubMed  Google Scholar 

  23. Laor T, Chun GF, Dardzinski BJ et al (2002) Posterior distal femoral and proximal tibial metaphyseal stripes at MR imaging in children and young adults. Radiology 224:669–674

    PubMed  Google Scholar 

  24. Bollow M, Braun J, Kannenberg J et al (1997) Normal morphology of sacroiliac joints in children: magnetic resonance studies related to age and sex. Skelet Radiol 26:697–704

    CAS  Google Scholar 

  25. Craig JG, Cody DD, Van Holsbeeck M (2004) The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume. Skelet Radiol 33:337–344

    Google Scholar 

  26. Bray TJ, Vendhan K, Roberts J et al (2016) Association of the apparent diffusion coefficient with maturity in adolescent sacroiliac joints. J Magn Reson Imaging 44:556–564

    PubMed  PubMed Central  Google Scholar 

  27. George J, Nagendran J, Azmi K (2012) Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players. Br J Sports Med 46:273–278

    PubMed  Google Scholar 

  28. Kercher J, Xerogeanes J, Tannenbaum A et al (2009) Anterior cruciate ligament reconstruction in the skeletally immature: an anatomical study utilizing 3-dimensional magnetic resonance imaging reconstructions. J Pediatr Orthop 29:124–129

    PubMed  PubMed Central  Google Scholar 

  29. Kim HK, Shiraj S, Anton C, Horn PS (2014) The patellofemoral joint: do age and gender affect skeletal maturation of the osseous morphology in children? Pediatr Radiol 44:141–148

    PubMed  Google Scholar 

  30. Martinez Vera NP, Holler J, Widek T et al (2017) Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. Forensic Sci Int 277:21–29

    PubMed  Google Scholar 

  31. Pennock AT, Bomar JD, Manning JD (2018) The creation and validation of a knee bone age atlas utilizing MRI. J Bone Joint Surg Am 100:e20

    PubMed  Google Scholar 

  32. Saint-Martin P, Rerolle C, Pucheux J et al (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129:619–620

    PubMed  Google Scholar 

  33. Sarkodie BD, Botwe BO, Pambo P et al (2018) MRI age verification of U-17 footballers: the Ghana study. J Forensic Radiol Imaging 12:21–24

    Google Scholar 

  34. Štern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: International workshop on machine learning in medical imaging. Springer, Quebec City, pp 61–69

    Google Scholar 

  35. Tangmose S, Jensen KE, Villa C, Lynnerup N (2014) Forensic age estimation from the clavicle using 1.0T MRI — preliminary results. Forensic Sci Int 234:7–12

    PubMed  Google Scholar 

  36. Terada Y, Kono S, Tamada D et al (2013) Skeletal age assessment in children using an open compact MRI system. Magn Reson Med 69:1697–1702

    PubMed  Google Scholar 

  37. Terada Y, Kono S, Uchiumi T et al (2014) Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet. Magn Reson Med Sci 13:215–219

    PubMed  Google Scholar 

  38. Terada Y, Tamada D, Kose K et al (2016) Acceleration of skeletal age MR examination using compressed sensing. J Magn Reson Imaging 44:204–211

    PubMed  Google Scholar 

  39. Tomei E, Sartori A, Nissman D et al (2014) Value of MRI of the hand and the wrist in evaluation of bone age: preliminary results. J Magn Reson Imaging 39:1198–1205

    PubMed  Google Scholar 

  40. Vo A, Beaule PE, Sampaio ML et al (2015) The femoral head-neck contour varies as a function of physeal development. Bone Joint Res 4:17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baumann P, Widek T, Merkens H et al (2015) Dental age estimation of living persons: comparison of MRI with OPG. Forensic Sci Int 253:76–80

    PubMed  Google Scholar 

  42. Jopp E, Schröder I, Maas R et al (2010) Proximal tibial epiphysis in magnetic resonance imaging. Rechtsmedizin 20:464–468

    Google Scholar 

  43. Tscholl PM, Junge A, Dvorak J, Zubler V (2016) MRI of the wrist is not recommended for age determination in female football players of U-16/U-17 competitions. Scand J Med Sci Sports 26:324–328

    CAS  PubMed  Google Scholar 

  44. Urschler M, Grassegger S, Štern D (2015) What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents. Ann Hum Biol 42:358–367

    PubMed  Google Scholar 

  45. Auf der Mauer M, Saring D, Stanczus B et al (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med 133:205–215

    PubMed  Google Scholar 

  46. De Tobel J, Hillewig E, de Haas MB et al (2019) Forensic age estimation based on T1 SE and VIBE wrist MRI: do a one-fits-all staging technique and age estimation model apply? Eur Radiol 26:2924–2935

    Google Scholar 

  47. De Tobel J, Phlypo I, Fieuws S et al (2017) Forensic age estimation based on development of third molars: a staging technique for magnetic resonance imaging. J Forensic Odontostomatol 35:117–140

    PubMed  PubMed Central  Google Scholar 

  48. Guo Y, Olze A, Ottow C et al (2015) Dental age estimation in living individuals using 3.0 T MRI of lower third molars. Int J Legal Med 129:1265–1270

    PubMed  Google Scholar 

  49. Vieth V, Schulz R, Brinkmeier P et al (2014) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241c:118–122

  50. Schmidt S, Ottow C, Pfeiffer H et al (2017) Magnetic resonance imaging-based evaluation of ossification of the medial clavicular epiphysis in forensic age assessment. Int J Legal Med 131:1665–1673

    CAS  PubMed  Google Scholar 

  51. Hojreh A, Gamper J, Schmook MT et al (2018) Hand MRI and the Greulich-Pyle atlas in skeletal age estimation in adolescents. Skelet Radiol 47:963–971

    Google Scholar 

  52. De Tobel J, Hillewig E, Bogaert S et al (2017) Magnetic resonance imaging of third molars: developing a protocol suitable for forensic age estimation. Ann Hum Biol 44:130–139

    PubMed  Google Scholar 

  53. Dedouit F, Auriol J, Rousseau H et al (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:232

    PubMed  Google Scholar 

  54. Ekizoglu O, Hocaoglu E, Inci E et al (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260:102

    PubMed  Google Scholar 

  55. Vieth V, Schulz R, Heindel W et al (2018) Forensic age assessment by 3.0 T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol 28:3255–3262

    PubMed  Google Scholar 

  56. Schmidt S, Vieth V, Timme M et al (2015) Examination of ossification of the distal radial epiphysis using magnetic resonance imaging. New insights for age estimation in young footballers in FIFA tournaments. Sci Justice 55:139–144

    CAS  PubMed  Google Scholar 

  57. Timme M, Ottow C, Schulz R et al (2017) Magnetic resonance imaging of the distal radial epiphysis: a new criterion of maturity for determining whether the age of 18 has been completed? Int J Legal Med 131:579–584

    CAS  PubMed  Google Scholar 

  58. Serin J, Rerolle C, Pucheux J et al (2016) Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 130:1121–1128

    PubMed  Google Scholar 

  59. Ekizoglu O, Inci E, Ors S et al (2018) Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head. Int J Legal Med 133:241–248

    PubMed  Google Scholar 

  60. Abdelbary MH, Abdelkawi MM, Nasr MA (2018) Age determination by MR imaging of the wrist in Egyptian male football players. How far is it reliable? Egyptian J Radiol Nucl Med 49:146–151

    Google Scholar 

  61. Krämer JA, Schmidt S, Jurgens KU et al (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10:306–313

    PubMed  Google Scholar 

  62. Krämer JA, Schmidt S, Jurgens KU et al (2014) Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med 128:509–514

    PubMed  Google Scholar 

  63. Saint-Martin P, Rerolle C, Dedouit F et al (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis — a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683

    PubMed  Google Scholar 

  64. Ekizoglu O, Hocaoglu E, Can IO et al (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129:825–831

    PubMed  Google Scholar 

  65. Ottow C, Schulz R, Pfeiffer H et al (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol 27:5041–5048

    PubMed  Google Scholar 

  66. Wittschieber D, Vieth V, Timme M et al (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10:198–202

    PubMed  Google Scholar 

  67. Bolívar J, Sandoval Ó, Osorio J et al (2015) Relationship of chronological age and sexual maturity with skeletal maturity by magnetic resonance imaging of the distal radial epiphysis in adolescent football players. Apunts Medicina de l'Esport 50:129–137

    Google Scholar 

  68. Rashid NR, Aliasghar A, Shaker QM (2015) Magnetic resonance imaging of the left wrist: assessment of the bone age in a sample of healthy Iraqi adolescent males. J Fac Med Baghdad 57:22–26

    Google Scholar 

  69. Serinelli S, Panebianco V, Martino M et al (2015) Accuracy of MRI skeletal age estimation for subjects 12-19. Potential use for subjects of unknown age. Int J Legal Med 129:609–617

    PubMed  Google Scholar 

  70. Ekizoglu O, Hocaoglu E, Can IO et al (2016) Spheno-occipital synchondrosis fusion degree as a method to estimate age: a preliminary, magnetic resonance imaging study. Aust J Forensic Sci 48:159–170

    Google Scholar 

  71. Hillewig E, Degroote J, Van der Paelt T et al (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689

    CAS  PubMed  Google Scholar 

  72. Saint-Martin P, Rerolle C, Dedouit F et al (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127:1023–1030

    PubMed  Google Scholar 

  73. De Tobel J, Hillewig E, Verstraete K (2017) Forensic age estimation based on magnetic resonance imaging of third molars: converting 2D staging into 3D staging. Ann Hum Biol 44:121–129

    PubMed  Google Scholar 

  74. De Tobel J, Hillewig E, van Wijk M et al (2020) Staging clavicular development on MRI: pitfalls and suggestions for age estimation. J Magn Reson Imaging 51:377–388

    PubMed  Google Scholar 

  75. Nasel C, Gahleitner A, Breitenseher M et al (1998) Dental MR tomography of the mandible. J Comput Assist Tomogr 22:498–502

    CAS  PubMed  Google Scholar 

  76. Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227

    CAS  PubMed  Google Scholar 

  77. Köhler S, Schmelzle R, Loitz C, Puschel K (1994) Development of wisdom teeth as a criterion of age determination. Ann Anat 176:339–345

    PubMed  Google Scholar 

  78. Schmeling A, Schulz R, Reisinger W et al (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8

    PubMed  Google Scholar 

  79. Kellinghaus M, Schulz R, Vieth V et al (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325

    PubMed  Google Scholar 

  80. Wittschieber D, Schmidt S, Vieth V et al (2014) Subclassification of clavicular substage 3a is useful for diagnosing the age of 17 years. Rechtsmedizin 24:485–488

    Google Scholar 

  81. Boldsen JL, Milner GR, Konigsberg LW, Wood JW (2002) Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge, pp 73–106

    Google Scholar 

  82. Liversidge HM (2008) Timing of human mandibular third molar formation. Ann Hum Biol 35:294–321

    CAS  PubMed  Google Scholar 

  83. Thevissen PW, Alqerban A, Asaumi J et al (2010) Human dental age estimation using third molar developmental stages: accuracy of age predictions not using country specific information. Forensic Sci Int 201:106–111

    CAS  PubMed  Google Scholar 

  84. Thevissen PW, Fieuws S, Willems G (2010) Human third molars development: comparison of 9 country specific populations. Forensic Sci Int 201:102–105

    CAS  PubMed  Google Scholar 

  85. Willems G, Lee SS, Uys A et al (2017) Age estimation based on Willems method versus new country-specific method in south African black children. Int J Legal Med 132:599–607

    PubMed  Google Scholar 

  86. Haglund M, Mornstad H (2018) A systematic review and meta-analysis of the fully formed wisdom tooth as a radiological marker of adulthood. Int J Legal Med 133:231–239

    PubMed  Google Scholar 

  87. Schmeling A, Reisinger W, Loreck D et al (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113:253–258

    CAS  PubMed  Google Scholar 

  88. Olze A, van NP, Schmidt S et al (2006) Studies on the progress of third-molar mineralisation in a black African population. Homo 57:209–217

  89. Zhang A, Sayre JW, Vachon L et al (2009) Racial differences in growth patterns of children assessed on the basis of bone age. Radiology 250:228–235

    PubMed  PubMed Central  Google Scholar 

  90. Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41:497–500

    PubMed  PubMed Central  Google Scholar 

  91. Sarkodie B, Ofori E, Pambo P (2013) MRI to determine the chronological age of Ghanaian footballers. S Afr J Sports Med 25:3

    Google Scholar 

  92. Malina RM (2011) Skeletal age and age verification in youth sport. Sports Med 41:925–947

    PubMed  Google Scholar 

  93. Timme M, Steinacker JM, Schmeling A (2017) Age estimation in competitive sports. Int J Legal Med 131:225–233

    PubMed  Google Scholar 

  94. Thevissen PW, Fieuws S, Willems G (2010) Human dental age estimation using third molar developmental stages: does a Bayesian approach outperform regression models to discriminate between juveniles and adults? Int J Legal Med 124:35–42

    CAS  PubMed  Google Scholar 

  95. Fieuws S, Willems G, Larsen-Tangmose S et al (2016) Obtaining appropriate interval estimates for age when multiple indicators are used: evaluation of an ad-hoc procedure. Int J Legal Med 130:489–499

    PubMed  Google Scholar 

  96. Konigsberg LW (2015) Multivariate cumulative probit for age estimation using ordinal categorical data. Ann Hum Biol 42:368–378

    PubMed  Google Scholar 

  97. AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490

    CAS  PubMed  Google Scholar 

  98. Liversidge HM, Smith BH, Maber M (2010) Bias and accuracy of age estimation using developing teeth in 946 children. Am J Phys Anthropol 143:545–554

    PubMed  Google Scholar 

  99. Bassed RB, Briggs C, Drummer OH (2011) Age estimation using CT imaging of the third molar tooth, the medial clavicular epiphysis, and the spheno-occipital synchondrosis: a multifactorial approach. Forensic Sci Int 212:273

    PubMed  Google Scholar 

  100. Cameriere R, Ferrante L (2008) Age estimation in children by measurement of carpals and epiphyses of radius and ulna and open apices in teeth: a pilot study. Forensic Sci Int 174:60–63

    PubMed  Google Scholar 

  101. Demirturk Kocasarac H, Sinanoglu A, Noujeim M et al (2016) Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study. Int J Legal Med 130:799–808

    PubMed  Google Scholar 

  102. Thevissen PW, Kaur J, Willems G (2012) Human age estimation combining third molar and skeletal development. Int J Legal Med 126:285–292

    CAS  PubMed  Google Scholar 

  103. Schmidt S, Schramm D, Ribbecke S et al (2016) Forensic age estimation in juveniles and young adults: reducing the range of scatter in age diagnosis by combining different methods. Arch Kriminol 237:25–37

    PubMed  Google Scholar 

  104. Shi L, Jiang F, Ouyang F et al (2017) DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet 33:1–9

    PubMed  Google Scholar 

  105. Schmeling A, Dettmeyer R, Rudolf E et al (2016) Forensic age estimation. Dtsch Arztebl Int 113:44–50

    PubMed  PubMed Central  Google Scholar 

  106. Fournier K (2017) [Age estimation of unaccompanied minors questioned: defining the issue, analysis and recommendations]. Platform for refugee children

    Google Scholar 

  107. Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66

    PubMed  Google Scholar 

  108. Thodberg HH, van Rijn RR, Jenni OG, Martin DD (2017) Automated determination of bone age from hand X-rays at the end of puberty and its applicability for age estimation. Int J Legal Med 131:771–780

    PubMed  Google Scholar 

  109. Thodberg HH, Savendahl L (2010) Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol 17:1425–1432

    PubMed  Google Scholar 

  110. Ebner T, Štern D, Donner R et al (2014) Towards automatic bone age estimation from MRI: localization of 3D anatomical landmarks. Med Image Comput Comput Assist Interv 17:421–428

    PubMed  Google Scholar 

  111. Štern D, Ebner T, Bischof H et al (2014) Fully automatic bone age estimation from left hand MR images. Med Image Comput Comput Assist Interv 17:220–227

    PubMed  Google Scholar 

  112. Unterpirker W, Ebner T, Štern D, Urschler M (2015) Automatic third molar localization from 3D MRI using random regression forests. In: proceedings of the 19th conference on medical image understanding and analysis (MIUA), Lincoln, pp 195–200

  113. Štern D, Payer C, Lepetit V, Urschler M (2016) Automated age estimation from hand MRI volumes using deep learning. In: International conference on medical image computing and computer-assisted intervention. Springer Nature, Heidelberg, pp 194–202

    Google Scholar 

  114. European Asylum Support Office (EASO) (2018) Practical guide on age estimation, 2nd edn. EASO Practical Guides Series, Malta

  115. International Organization for Forensic Odonto-Stomatology (IOFOS) (2018) Recommendations for quality assurance: dental age estimation. Leuven

  116. Garamendi PM, Landa MI, Ballesteros J, Solano MA (2005) Reliability of the methods applied to assess age minority in living subjects around 18 years old. A survey on a Moroccan origin population. Forensic Sci Int 154:3–12

    CAS  PubMed  Google Scholar 

  117. Schumacher G, Schmeling A, Rudolf E (2018) Medical age assessment of juvenile migrants: an analysis of age marker-based assessment criteria. Joint Research Centre (JRC) science for policy report, European Union, Luxembourg

  118. Das SK, Wang JL, Bing L et al (2017) Regional values of diffusional kurtosis estimates in the healthy brain during normal aging. Clin Neuroradiol 27:283–298

    CAS  PubMed  Google Scholar 

  119. Helpern JA, Adisetiyo V, Falangola MF et al (2011) Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging 33:17–23

    PubMed  PubMed Central  Google Scholar 

  120. Hsu JL, Van Hecke W, Bai CH et al (2010) Microstructural white matter changes in normal aging: a diffusion tensor imaging study with higher-order polynomial regression models. Neuroimage 49:32–43

    PubMed  Google Scholar 

  121. Grady CL, Garrett DD (2014) Understanding variability in the BOLD signal and why it matters for aging. Brain Imaging Behav 8:274–283

    PubMed  PubMed Central  Google Scholar 

  122. Paydar A, Fieremans E, Nwankwo JI et al (2014) Diffusional kurtosis imaging of the developing brain. AJNR Am J Neuroradiol 35:808–814

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pfefferbaum A, Sullivan EV, Hedehus M et al (2000) Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med 44:259–268

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tom Verschoore (Bimetra, Ghent University Hospital), for advice regarding the review protocol. We acknowledge Karoline Elisivdatter Nyhagen for providing us the reference list of her bachelor’s thesis at the University of Central Lancashire, titled “Age Estimation in the Living Using Magnetic Resonance Imaging — A Review of Current Methods Identifying the 18-Years-Old Threshold,” which rendered two additional references to screen. We also thank Michiel de Haas (Netherlands Forensic Institute) and Martin Urschler (Ludwig Boltzmann Institute for Clinical Forensic Imaging) for providing us additional papers.

Our sincerest gratitude goes out to the authors who provided additional data for this review: Markus Auf der Mauer, Astrid Junge, Martin Urschler. Furthermore, special thanks to Peter Roozenbeek (KU Leuven) for his advice and help to create the perfect graphs, and to Steffen Fieuws (I-BioStat, KU Leuven) for statistical support and advice.

Finally, we kindly acknowledge Inès Phlypo and Patrick Davis for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannick De Tobel.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 4263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Tobel, J., Bauwens, J., Parmentier, G.I.L. et al. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 50, 1691–1708 (2020). https://doi.org/10.1007/s00247-020-04709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04709-x

Keywords

Navigation