Skip to main content

Advertisement

Log in

Fetal magnetic resonance imaging: supratentorial brain malformations

  • Fetal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Fetal MRI is the modality of choice to study supratentorial brain malformations. To accurately interpret the MRI, the radiologist needs to understand the normal sequence of events that occurs during prenatal brain development; this includes familiarity with the processes of hemispheric cleavage, formation of interhemispheric commissures, neuro-glial proliferation and migration, and cortical folding. Disruption of these processes results in malformations observed on fetal MRI including holoprosencephaly, callosal agenesis, heterotopic gray matter, lissencephaly and other malformations of cortical development (focal cortical dysplasia, polymicrogyria). The radiologist should also be familiar with findings that have high association with specific conditions affecting the central nervous system or other organ systems. This review summarizes and illustrates common patterns of supratentorial brain malformations and emphasizes aspects that are important to patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rankin J, Pattenden S, Abramsky L et al (2005) Prevalence of congenital anomalies in five British regions, 1991–99. Arch Dis Child Fetal Neonatal Ed 90:F374–F379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. American Institute of Ultrasound in Medicine (2013) AIUM practice guideline for the performance of obstetric ultrasound examinations. J Ultrasound Med 32:1083–1101

    Article  Google Scholar 

  3. Griffiths PD, Bradburn M, Campbell MJ et al (2017) Change in diagnostic confidence brought about by using in utero MRI for fetal structural brain pathology: analysis of the MERIDIAN cohort. Clin Radiol 72:451–457

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths PD, Bradburn M, Campbell MJ et al (2019) MRI in the diagnosis of fetal developmental brain abnormalities: the MERIDIAN diagnostic accuracy study. Health Technol Assess 23:1–144

    Article  PubMed  PubMed Central  Google Scholar 

  5. Griffiths PD, Bradburn M, Campbell MJ et al (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546

    Article  PubMed  Google Scholar 

  6. Jaimes C, Delgado J, Cunnane MB et al (2019) Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 49:37–45

    Article  PubMed  Google Scholar 

  7. Priego G, Barrowman NJ, Hurteau-Miller J, Miller E (2017) Does 3T fetal MRI improve image resolution of normal brain structures between 20 and 24 weeks' gestational age? AJNR Am J Neuroradiol 38:1636–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolasinski J, Takahashi E, Stevens AA et al (2013) Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion MRI coherence. Neuroimage 79:412–422

    Article  PubMed  Google Scholar 

  9. McManus MF, Golden JA (2005) Neuronal migration in developmental disorders. J Child Neurol 20:280–286

    Article  PubMed  Google Scholar 

  10. Vossough A, Limperopoulos C, Putt ME et al (2013) Development and validation of a semiquantitative brain maturation score on fetal MR images: initial results. Radiology 268:200–207

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang E, Chu WCW, Lee EY (2017) A practical approach to supratentorial brain malformations: what radiologists should know. Radiol Clin N Am 55:609–627

    Article  PubMed  Google Scholar 

  12. Raybaud C, Widjaja E (2011) Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am 21:483–543

    Article  PubMed  Google Scholar 

  13. Garel C, Chantrel E, Brisse H et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouyssi-Kobar M, du Plessis AJ, McCarter R et al (2016) Third trimester brain growth in preterm infants compared with in utero healthy fetuses. Pediatrics 138:e20161640

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yarnykh VL, Prihod'ko IY, Savelov AA, Korostyshevskaya AM (2018) Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping. AJNR Am J Neuroradiol 39:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Angtuaco TL (2005) Ultrasound imaging of fetal brain abnormalities: three essential anatomical levels. Ultrasound Q 21:287–294

    Article  PubMed  Google Scholar 

  17. American College of Radiology (2018) ACR–ACOG–AIUM–SMFM–SRU practice parameter for the performance of standard diagnostic obstretrical ultrasound. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/us-ob.pdf. Accessed 15 April 2020

  18. International Society of Ultrasound in Obstetrics & Gynecology Education Committee (2007) Sonographic examination of the fetal central nervous system: guidelines for performing the 'basic examination' and the 'fetal neurosonogram'. Ultrasound Obstet Gynecol 29:109–116

    Article  Google Scholar 

  19. Shekdar K, Feygin T (2011) Fetal neuroimaging. Neuroimaging Clin N Am 21:677–703

    Article  PubMed  Google Scholar 

  20. Diogo MC, Prayer D, Gruber GM et al (2019) Echo-planar FLAIR sequence improves subplate visualization in fetal MRI of the brain. Radiology 292:159–169

    Article  PubMed  Google Scholar 

  21. Gholipour A, Estroff JA, Barnewolt CE et al (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6:329–339

    Article  PubMed  Google Scholar 

  22. Gholipour A, Rollins CK, Velasco-Annis C et al (2017) A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 7:476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gholipour A, Limperopoulos C, Clancy S et al (2014) Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models. Med Image Comput Comput Assist Interv 17:292–299

    PubMed  PubMed Central  Google Scholar 

  24. Gholipour A, Akhondi-Asl A, Estroff JA, Warfield SK (2012) Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. Neuroimage 60:1819–1831

    Article  PubMed  Google Scholar 

  25. Pier DB, Gholipour A, Afacan O et al (2016) 3D super-resolution motion-corrected MRI: validation of fetal posterior fossa measurements. J Neuroimaging 26:539–544

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488

    Article  PubMed  Google Scholar 

  27. Marami B, Scherrer B, Afacan O et al (2016) Motion-robust diffusion-weighted brain MRI reconstruction through slice-level registration-based motion tracking. IEEE Trans Med Imaging 35:2258–2269

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vasung L, Lepage C, Rados M et al (2016) Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Front Neuroanat 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boston Children's Hospital (2020) Fetal data. www.fetalmri.org. Accessed 15 April 2020

  30. Righini A, Cesaretti C, Conte G et al (2015) Expanding the spectrum of human ganglionic eminence region anomalies on fetal magnetic resonance imaging. Neuroradiology 58:293–300

    Article  PubMed  Google Scholar 

  31. Righini A, Frassoni C, Inverardi F et al (2013) Bilateral cavitations of ganglionic eminence: a fetal MR imaging sign of halted brain development. AJNR Am J Neuroradiol 34:1841–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Filly RA, Chinn DH, Callen PW (1984) Alobar holoprosencephaly: ultrasonographic prenatal diagnosis. Radiology 151:455–459

    Article  CAS  PubMed  Google Scholar 

  33. Kline-Fath BM (2015) Supratentorial anomalies. In: Kline-Fath BM, Bulas DI, Bahado-Singh R (eds) Fundamental and advanced fetal imaging, ultrasound and MRI. Wolters-Kluwer, Philadelphia

    Google Scholar 

  34. Simon EM, Hevner RF, Pinter JD et al (2002) The middle interhemispheric variant of holoprosencephaly. AJNR Am J Neuroradiol 23:151–156

    PubMed  PubMed Central  Google Scholar 

  35. Webb EA, Dattani MT (2010) Septo-optic dysplasia. Eur J Hum Genet 18:393–397

    Article  PubMed  Google Scholar 

  36. Miller SP, Shevell MI, Patenaude Y et al (2000) Septo-optic dysplasia plus: a spectrum of malformations of cortical development. Neurology 54:1701–1703

    Article  CAS  PubMed  Google Scholar 

  37. Tang PH, Bartha AI, Norton ME et al (2009) Agenesis of the corpus callosum: an MR imaging analysis of associated abnormalities in the fetus. AJNR Am J Neuroradiol 30:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pashaj S, Merz E, Wellek S (2013) Biometry of the fetal corpus callosum by three-dimensional ultrasound. Ultrasound Obstet Gynecol 42:691–698

    Article  CAS  PubMed  Google Scholar 

  39. Harreld JH, Bhore R, Chason DP, Twickler DM (2011) Corpus callosum length by gestational age as evaluated by fetal MR imaging. AJNR Am J Neuroradiol 32:490–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hetts SW, Sherr EH, Chao S et al (2006) Anomalies of the corpus callosum: an MR analysis of the phenotypic spectrum of associated malformations. AJR Am J Roentgenol 187:1343–1348

    Article  PubMed  Google Scholar 

  41. Gonzalez G, Vedolin L, Barry B et al (2013) Location of periventricular nodular heterotopia is related to the malformation phenotype on MRI. AJNR Am J Neuroradiol 34:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 13:710–726

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jamuar SS, Lam AT, Kircher M et al (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:733–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nagaraj UD, Peiro JL, Bierbrauer KS, Kline-Fath BM (2016) Evaluation of subependymal gray matter heterotopias on fetal MRI. AJNR Am J Neuroradiol 37:720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721

    Article  CAS  PubMed  Google Scholar 

  46. Pilz DT, Matsumoto N, Minnerath S et al (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7:2029–2037

    Article  CAS  PubMed  Google Scholar 

  47. Di Donato N, Timms AE, Aldinger KA et al (2018) Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 20:1354–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Stouffer MA, Golden JA, Francis F (2016) Neuronal migration disorders: focus on the cytoskeleton and epilepsy. Neurobiol Dis 92:18–45

    Article  PubMed  Google Scholar 

  49. Devisme L, Bouchet C, Gonzales M et al (2012) Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 135:469–482

    Article  PubMed  Google Scholar 

  50. Blumcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 52:158–174

    Article  PubMed  Google Scholar 

  51. Glenn OA, Cuneo AA, Barkovich AJ et al (2012) Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology 263:843–855

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barkovich AJ, Chuang SH (1990) Unilateral megalencephaly: correlation of MR imaging and pathologic characteristics. AJNR Am J Neuroradiol 11:523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jansen LA, Mirzaa GM, Ishak GE et al (2015) PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 138:1613–1628

    Article  PubMed  PubMed Central  Google Scholar 

  54. Squier W, Jansen A (2014) Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun 2:80

    Article  PubMed  PubMed Central  Google Scholar 

  55. Righini A, Zirpoli S, Mrakic F et al (2004) Early prenatal MR imaging diagnosis of polymicrogyria. AJNR Am J Neuroradiol 25:343–346

    PubMed  PubMed Central  Google Scholar 

  56. Im K, Pienaar R, Paldino MJ et al (2013) Quantification and discrimination of abnormal sulcal patterns in polymicrogyria. Cereb Cortex 23:3007–3015

    Article  PubMed  Google Scholar 

  57. Leventer RJ, Jansen A, Pilz DT et al (2010) Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain 133:1415–1427

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kuzniecky R, Andermann F (1994) The congenital bilateral perisylvian syndrome: imaging findings in a multicenter study. CBPS study group. AJNR Am J Neuroradiol 15:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ebrahimi-Fakhari D, Mann LL, Poryo M et al (2019) Correction to: incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis 14:106

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gu X, Han L, Chen J et al (2018) Antenatal screening and diagnosis of tuberous sclerosis complex by fetal echocardiography and targeted genomic sequencing. Medicine 97:e0112

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110:208–221

    Article  PubMed  Google Scholar 

  62. Manikkam SA, Chetcuti K, Howell KB et al (2018) Temporal lobe malformations in achondroplasia: expanding the brain imaging phenotype associated with FGFR3-related skeletal dysplasias. AJNR Am J Neuroradiol 39:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Philpott CM, Widjaja E, Raybaud C et al (2013) Temporal and occipital lobe features in children with hypochondroplasia/FGFR3 gene mutation. Pediatr Radiol 43:1190–1195

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Author Camilo Jaimes was partially supported by a Young Investigator Award from the Society for Pediatric Radiology and by the Schlaeger Fellowship for Neuroscience Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Jaimes.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.J., Yang, E., Soul, J.S. et al. Fetal magnetic resonance imaging: supratentorial brain malformations. Pediatr Radiol 50, 1934–1947 (2020). https://doi.org/10.1007/s00247-020-04696-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04696-z

Keywords

Navigation