Skip to main content

Image-quality optimization and artifact reduction in fetal magnetic resonance imaging

Abstract

Fetal MRI allows for earlier and better detection of complex congenital anomalies. However, its diagnostic utility is often limited by technical barriers that introduce artifacts and reduce image quality. The main determinants of fetal MR image quality are speed of acquisition, spatial resolution and signal-to-noise ratio (SNR). Imaging optimization is a challenge because a change to improve one scan parameter often leads to worsening of another. Moreover, the recent introduction of fetal MRI on 3-tesla (T) scanners to achieve better SNR can amplify some technical issues. Motion, banding artifacts and aliasing artifacts impact the quality of fetal acquisitions at any field strength. High specific absorption rate (SAR) and artifacts from inhomogeneities in the radiofrequency field are important limitations of high-field-strength imaging. We discuss technical barriers that impact image quality and are important limitations to prenatal MRI diagnosis, and propose solutions to improve image quality and reduce artifacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Prayer D, Malinger G, Brugger PC et al (2017) ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 49:671–680

    CAS  PubMed  Article  Google Scholar 

  2. Platt LD, Barth RA, Pugash D (2018) Current controversies in prenatal diagnosis 3: fetal MRI should be performed in all prenatally detected fetuses with a major structural abnormality. Prenat Diagn 38:166–172

    PubMed  Article  Google Scholar 

  3. Weisstanner C, Gruber GM, Brugger PC et al (2017) Fetal MRI at 3T — ready for routine use? Br J Radiol 90:20160362

    PubMed  Article  Google Scholar 

  4. Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Gholipour A, Estroff JA, Barnewolt CE et al (2014) Fetal MRI: a technical update with educational aspirations. Concepts Magn Reson Part A Bridge Educ Res 43:237–266

    CAS  Article  Google Scholar 

  6. Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462

    PubMed  Article  Google Scholar 

  7. Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532

    PubMed  Article  Google Scholar 

  8. Gruber B, Froeling M, Leiner T, Klomp DWJ (2018) RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 48:590–604

    PubMed Central  Article  Google Scholar 

  9. Huang SY, Seethamraju RT, Patel P et al (2015) Body MR imaging: artifacts, k-space, and solutions. Radiographics 35:1439–1460

    PubMed  Article  Google Scholar 

  10. Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28:1983–1998

    PubMed  Article  Google Scholar 

  11. Victoria T, Johnson AM, Edgar JC et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201

    PubMed  Article  Google Scholar 

  12. Victoria T, Jaramillo D, Roberts TPL et al (2014) Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44:376–386

    PubMed  Article  Google Scholar 

  13. Dagia C, Ditchfield M (2008) 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 68:309–319

    Article  Google Scholar 

  14. Priego G, Barrowman NJ, Hurteau-Miller J, Miller E (2017) Does 3T fetal MRI improve image resolution of normal brain structures between 20 and 24 weeks’ gestational age? AJNR Am J Neuroradiol 38:1636–1642

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Jaimes C, Delgado J, Cunnane MB et al (2019) Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T. Pediatr Radiol 49:37–45

    PubMed  Article  Google Scholar 

  16. Chartier AL, Bouvier MJ, McPherson DR et al (2019) The safety of maternal and fetal MRI at 3T. AJR Am J Roentgenol 213:1170–1173

    PubMed  Article  Google Scholar 

  17. Welsh RC, Nemec U, Thomason ME (2011) Fetal magnetic resonance imaging at 3.0 T. Top Magn Reson Imaging 22:119–131

    PubMed  Article  Google Scholar 

  18. Hand JW, Li Y, Thomas EL et al (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893

    CAS  PubMed  Article  Google Scholar 

  19. Tsai LL, Grant AK, Mortele KJ et al (2015) A practical guide to MR imaging safety: what radiologists need to know. Radiographics 35:1722–1737

    PubMed  Article  Google Scholar 

  20. Alsop DC (1997) The sensitivity of low flip angle RARE imaging. Magn Reson Med 37:176–184

    CAS  PubMed  Article  Google Scholar 

  21. Hennig J, Scheffler K (2000) Easy improvement of signal-to-noise in RARE-sequences with low refocusing flip angles. Magn Reson Med 44:983–985

    CAS  PubMed  Article  Google Scholar 

  22. Guo W-Y, Ono S, Oi S et al (2006) Dynamic motion analysis of fetuses with central nervous system disorders by cine magnetic resonance imaging using fast imaging employing steady-state acquisition and parallel imaging: a preliminary result. J Neurosurg 105:94–100

    PubMed  Google Scholar 

  23. Ohliger MA, Sodickson DK (2006) An introduction to coil array design for parallel MRI. NMR Biomed 19:300–315

    PubMed  Article  Google Scholar 

  24. Parikh PT, Sandhu GS, Blackham KA et al (2011) Evaluation of image quality of a 32-channel versus a 12-channel head coil at 1.5 T for MR imaging of the brain. AJNR Am J Neuroradiol 32:365–373

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Keil B, Wald LL (2013) Massively parallel MRI detector arrays. J Magn Reson 229:75–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Arena L, Morehouse HT, Safir J (1995) MR imaging artifacts that simulate disease: how to recognize and eliminate them. Radiographics 15:1373–1394

    CAS  PubMed  Article  Google Scholar 

  27. da Silva NA, Vassallo J, Sarian LO et al (2018) Magnetic resonance imaging of the fetal brain at 3 tesla: preliminary experience from a single series. Medicine 97:e12602

    PubMed  PubMed Central  Article  Google Scholar 

  28. Gholipour A, Estroff JA, Warfield SK (2010) Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 29:1739–1758

    PubMed  PubMed Central  Article  Google Scholar 

  29. Pier DB, Gholipour A, Afacan O et al (2016) 3D super-resolution motion-corrected MRI: validation of fetal posterior fossa measurements. J Neuroimaging 26:539–544

    PubMed  PubMed Central  Article  Google Scholar 

  30. Velasco-Annis C, Gholipour A, Afacan O et al (2015) Normative biometrics for fetal ocular growth using volumetric MRI reconstruction. Prenat Diagn 35:400–408

    PubMed  PubMed Central  Article  Google Scholar 

  31. Gholipour A, Rollins CK, Velasco-Annis C et al (2017) A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 7:476

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Marami B, Mohseni Salehi SS, Afacan O et al (2017) Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 156:475–488

    PubMed  Article  Google Scholar 

  33. Khan S, Vasung L, Marami B et al (2019) Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. Neuroimage 185:593–608

    PubMed  Article  Google Scholar 

  34. Heiland S (2008) From a as in aliasing to Z as in zipper: artifacts in MRI. Clin Neuroradiol 18:25–36

    Article  Google Scholar 

  35. Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 27:1604–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheffler K, Lehnhardt S (2003) Principles and applications of balanced SSFP techniques. Eur Radiol 13:2409–2418

    PubMed  Article  Google Scholar 

  37. Hargreaves B (2012) Rapid gradient-echo imaging. J Magn Reson Imaging 36:1300–1313

    PubMed  PubMed Central  Article  Google Scholar 

  38. Graves MJ, Mitchell DG (2013) Body MRI artifacts in clinical practice: a physicist’s and radiologist’s perspective. J Magn Reson Imaging 38:269–287

    PubMed  Article  Google Scholar 

  39. Homann H, Graesslin I, Eggers H et al (2012) Local SAR management by RF shimming: a simulation study with multiple human body models. MAGMA 25:193–204

    PubMed  Article  Google Scholar 

  40. Webb AG (2011) Dielectric materials in magnetic resonance. Concepts Magn Reson 38A:148–184

    CAS  Article  Google Scholar 

  41. Childs AS, Malik SJ, O’Regan DP, Hajnal JV (2013) Impact of number of channels on RF shimming at 3T. MAGMA 26:401–410

    PubMed  PubMed Central  Article  Google Scholar 

  42. Abaci Turk E, Yetisir F, Adalsteinsson E et al (2020) Individual variation in simulated fetal SAR assessed in multiple body models. Magn Reson Med 83:1418–1428

    PubMed  Article  Google Scholar 

  43. Brink WM, Gulani V, Webb AG (2015) Clinical applications of dual-channel transmit MRI: a review. J Magn Reson Imaging 42:855–869

    PubMed  Article  Google Scholar 

  44. Vernickel P, Röschmann P, Findeklee C et al (2007) Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med 58:381–389

    CAS  PubMed  Article  Google Scholar 

  45. Garcia-Polo P, Gagoski B, Guerin B et al (2015) An anthropomorphic MR phantom of the gravid abdomen including the uterus, placenta, fetus and fetal brain. ISMRM Annual Meeting, Toronto

    Google Scholar 

  46. Murbach M, Cabot E, Neufeld E et al (2011) Local SAR enhancements in anatomically correct children and adult models as a function of position within 1.5 T MR body coil. Prog Biophys Mol Biol 107:428–433

    PubMed  Article  Google Scholar 

  47. Murbach M, Neufeld E, Samaras T et al (2017) Pregnant women models analyzed for RF exposure and temperature increase in 3TRF shimmed birdcages: impact of RF shimming on MRI exposure of pregnant women. Magn Reson Med 77:2048–2056

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Gee.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machado-Rivas, F., Jaimes, C., Kirsch, J.E. et al. Image-quality optimization and artifact reduction in fetal magnetic resonance imaging. Pediatr Radiol 50, 1830–1838 (2020). https://doi.org/10.1007/s00247-020-04672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04672-7

Keywords

  • Congenital
  • Fetus
  • Image optimization
  • Magnetic resonance imaging
  • Prenatal