Pediatric Radiology

, Volume 49, Issue 9, pp 1113–1129 | Cite as

Pediatric postmortem computed tomography: initial experience at a children’s hospital in the United States

  • Sharon W. GouldEmail author
  • M. Patricia Harty
  • Nicole E. Givler
  • Theresa E. Christensen
  • Riley N. Curtin
  • Howard T. Harcke


Postmortem CT might provide valuable information in determining the cause of death and understanding disease processes, particularly when combined with traditional autopsy. Pediatric applications of postmortem imaging represent a new and rapidly growing field. We describe our experience in establishing a pediatric postmortem CT program and present a discussion of the distinct challenges in developing this type of program in the United States of America, where forensic practice varies from other countries. We give a brief overview of recent literature along with the common imaging findings on postmortem CT that can simulate antemortem pathology.


Children Computed tomography Forensics Postmortem 



Theresa Christensen was supported by the Nemours Departments of Biomedical Research (through the Nemours Summer Undergraduate Research Program) and Medical Imaging. Riley Curtin was supported by the Delaware Institutional Development Award (IDeA) Network of Biomedical Research Excellence program, with a grant from the National Institutes of Health National Institute of General Medical Sciences (grant #P20 GM103446) and the state of Delaware, and by the Nemours Medical Imaging Department.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Eriksson A, Gustafsson T, Hoistad M et al (2016) Diagnostic accuracy of postmortem imaging vs. autopsy — a systematic review. Eur J Radiol 89:249–269CrossRefPubMedGoogle Scholar
  2. 2.
    Arthurs OJ, van Rijn RR, Sebire NJ (2014) Current status of paediatric post-mortem imaging: an ESPR questionnaire-based survey. Pediatr Radiol 44:244–251CrossRefPubMedGoogle Scholar
  3. 3.
    Arthurs OJ, van Rijn RR (2015) Paediatric and perinatal postmortem imaging: mortui vivos docent. Pediatr Radiol 45:476–477CrossRefPubMedGoogle Scholar
  4. 4.
    Baglivio M, Winklhofer S, Hatch GM et al (2013) The rise of forensic and post-mortem radiology — analysis of the literature between the year 2000 and 2011. J Forensic Radiol Imaging 1:3–9CrossRefGoogle Scholar
  5. 5.
    Koopmanschap DH, Bayat AR, Kubat B et al (2016) The radiodensity of cerebrospinal fluid and vitreous humor as indicator of the time since death. Forensic Sci Med Pathol 12:248–256CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Flach PM, Gascho D, Schweitzer W et al (2014) Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol 10:583–606CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen MC, Whitby EH, Fink MA et al (2015) Running a postmortem service — a business case and clinical experience. Pediatr Radiol 45:501–508CrossRefPubMedGoogle Scholar
  8. 8.
    Arthurs OJ, Taylor AM, Sebire NJ (2015) Indications, advantages and limitations of perinatal postmortem imaging in clinical practice. Pediatr Radiol 45:491–500CrossRefPubMedGoogle Scholar
  9. 9.
    Arthurs OJ, van Rijn RR, Taylor AM, Sebire NJ (2015) Paediatric and perinatal postmortem imaging: the need for a subspecialty approach. Pediatr Radiol 45:483–490CrossRefPubMedGoogle Scholar
  10. 10.
    Karalis J, Denton E (2016) Forensic and post-mortem imaging in England: a national perspective. J Forensic Radiol Imaging 4:17–19CrossRefGoogle Scholar
  11. 11.
    Arthurs OJ, van Rijn RR (2018) British Neuropathological Society and International Society for Forensic and Radiology Imaging expert consensus statment for post-mortem neurological imaging. J Forensic Radiol Imaging 13:3–4CrossRefGoogle Scholar
  12. 12.
    Arthurs OJ, van Rijn RR, Whitby EH et al (2016) ESPR postmortem imaging task force where we begin. Pediatr Radiol 46:1363–1369CrossRefPubMedGoogle Scholar
  13. 13.
    Shelmerdine SC, Gerrard CY, Rao P et al (2019) Joint European Society of Paediatric Radiology (ESPR) and International Society for Forensic Radiology nd imaging (ISFRI) guidelines: paediatric postmortem computed tomography imaging protocol. Pediatr Radiol 49:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chapman S (2015) What are the greatest challenges and/or barriers to applying postmortem imaging in paediatric radiology? Pediatr Radiol 45:478CrossRefPubMedGoogle Scholar
  15. 15.
    Ruder TD (2015) What are the greatest challenges or barriers to applying post-mortem imaging in pediatric radiology? Pediatr Radiol 45:479CrossRefPubMedGoogle Scholar
  16. 16.
    Hatch GM (2015) What are the greatest challenges or barriers to applying post-mortem imaging in pediatric radiology? Pediatr Radiol 45:480CrossRefPubMedGoogle Scholar
  17. 17.
    Cain TM (2015) What are the greatest challenges or barriers to applying postmortem imaging in paediatric radiology? Pediatr Radiol 45:481CrossRefPubMedGoogle Scholar
  18. 18.
    Alison M (2015) Postmortem imaging in paediatric radiology — the French perspective. Pediatr Radiol 45:482CrossRefPubMedGoogle Scholar
  19. 19.
    Gourincour G, Sarda-Quarello L, Laurent P-E et al (2015) The future of pediatric and perinatal postmortem imaging. Pediatr Radiol 45:5090516CrossRefGoogle Scholar
  20. 20.
    Klein WM, Bosboom DG, Koopmanschap DH et al (2015) Normal pediatric postmortem CT appearances. Pediatr Radiol 45:517–526CrossRefPubMedGoogle Scholar
  21. 21.
    Arthurs OJ, Barber JL, Taylor AM, Sebire NJ (2015) Normal perinatal and paediatric postmortem magnetic resonance imaging appearances. Pediatr Radiol 45:527–535CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Calder AD, Offiah AC (2015) Foetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnositc approach. Pediatr Radiol 45:536–548CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor AM, Arthurs OJ, Sebire NJ (2015) Postmortem cardiac imaging in fetuses and children. Pediatr Radiol 45:549–555CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arthurs OJ, Chitty LS, Judge-Kronis L (2015) Postmortem magnetic resonance appearances of congenital high airway obstruction syndrome. Pediatr Radiol 45:556–561CrossRefPubMedGoogle Scholar
  25. 25.
    Arthurs OJ (2015) ISFRI 2015: a turning point for paediatric PM imaging. J Forensic Radiol Imaging 3:180–181CrossRefGoogle Scholar
  26. 26.
    Harcke HT (2010) The case for postmortem imaging. Pediatr Radiol 40:138–140CrossRefPubMedGoogle Scholar
  27. 27.
    Arthurs OJ, Calder AD, Klein WM (2015) Is there still a role for fetal and perinatal post-mortem radiography? J Forensic Radiol Imaging 3:5–11CrossRefGoogle Scholar
  28. 28.
    McNulty JP, Burke NP, Pelletier NA et al (2014) The impact of analogue and digital radiography for the identification of occult post-mortem fractures in neonates: a porcine model. J Forensic Radiol Imaging 2:20–24CrossRefGoogle Scholar
  29. 29.
    deLange C, Vege A, Stake G (2007) Radiography after unexpected death in infants and children compared to autopsy. Pediatr Radiol 37:159–165CrossRefGoogle Scholar
  30. 30.
    Peterson GF, Clark SC (2006) Forensic autopsy performance standards. Am J Forensic Med Pathol 27:200–225CrossRefPubMedGoogle Scholar
  31. 31.
    Busardo FP, Frati P, Guglielmi G et al (2015) Postmortem-computed tomography and postmortem-computed tomography-angiography: a focused update. Radiol Med 120:810–823CrossRefPubMedGoogle Scholar
  32. 32.
    Donchin Y, Rivkind AI, Bar-Ziv J et al (1994) Utility of postmortem CT in trauma victims. J Trauma 37:552–555CrossRefPubMedGoogle Scholar
  33. 33.
    Krentz BV, Alamo L, Grimm J et al (2016) Performance of post-mortem CT compared to autopsy in children. Int J Legal Med 130:1089–1099CrossRefPubMedGoogle Scholar
  34. 34.
    Proisy M, Marchand AJ, Loget P et al (2013) Whole-body post-mortem computed tomography compared with autopsy in the investigation of unexpected death in infants and children. Eur Radiol 23:1711–1719CrossRefPubMedGoogle Scholar
  35. 35.
    Noda Y, Yoshimura K, Tsuji S et al (2013) Postmortem computed tomography imaging in the investigation of nontraumatic death in infants and children. Biomed Res Int 2013:327903CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zerlauth J, Doenz F, Dominguez A et al (2013) Surgical interventions with fatal outcome: utility of multi-phase postmortem CT angiography. Forensic Sci Int 225:32–41CrossRefPubMedGoogle Scholar
  37. 37.
    Ross SG, Bolliger SA, Ampanozi G et al (2014) Postmortem CT angiography: capabilites and limitations in traumatic and natural causes of death. Radiographics 34:830–846CrossRefPubMedGoogle Scholar
  38. 38.
    Rutty GN, Morgan B, Germerott T et al (2016) Ventilated post-mortem computed tomography — a historical review. J Forensic Radiol Imaging 4:35–42CrossRefGoogle Scholar
  39. 39.
    Prodhomme O, Baud C, Saguintaah M et al (2015) Principles of fetal postmortem ultrasound: a personal review. J Forensic Radiol Imaging 3:12–15CrossRefGoogle Scholar
  40. 40.
    Prodhomme O, Baud C, Saguintaah M et al (2015) Comparison of postmortem ultrasound and X-ray with autopsy in fetal death: retrospective study of 169 cases. J Forensic Radiol Imaging 3:120–130CrossRefGoogle Scholar
  41. 41.
    Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336CrossRefPubMedGoogle Scholar
  42. 42.
    Eustler EP, Khanna G (2016) Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 46:858–872CrossRefGoogle Scholar
  43. 43.
    Thayyil S, Sabire NJ, Chitty LS et al (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233CrossRefPubMedGoogle Scholar
  44. 44.
    Harty MP, Schmit P (2016) Pediatric image assisted autopsy: North American perspective. Presented at the sunrise session: post-mortem imaging. International Society for Pediatric Radiology, ChicagoGoogle Scholar
  45. 45.
    Mazuchowski EL, Franco DM, Berran PJ, Harcke HT (2017) The virtual hydrostatic test. Am J Forensic Med Pathol 38:24–28PubMedGoogle Scholar
  46. 46.
    Barber JL, Sebire NJ, Chitty LS et al (2015) Lung aeration on post-mortem magnetic resonance imaging is a useful marker of live versus stillbirth. Int J Legal Med 129:531–536Google Scholar
  47. 47.
    Hong TS, Reyes JA, Moineddin R et al (2011) Value of postmortem thoracic CT over radiography in imaging of rib fractures. Pediatr Radiol 41:736–748CrossRefPubMedGoogle Scholar
  48. 48.
    Shelmerdine SC, Langan D, Hutchinson JC et al (2018) Chest radiographs versus CT for the detection of rib fractures in children (DRIFT): a diagnostic accuracy observational study. Lancet Child Adolesc Health 2:802–811CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Offiah CE, Dean J (2016) Post-mortem CT and MRI: appropriate post-mortem imaging appearances and changes related to cardiopulmonary resuscitation. Br J Radiol 89:20150851Google Scholar
  50. 50.
    Oyake Y, Aoki T, Shiotani S et al (2006) Postmortem computed tomography for detecting causes of sudden death in infants and children: retrospective review of cases. Radiat Med 24:493–502CrossRefPubMedGoogle Scholar
  51. 51.
    Sieswerda-Hoogendoorn T, Soerdjbalie-Maikoe V, deBakker H, van Rijn RR (2014) Postmortem CT compared to autopsy in children: concordance in a forensic setting. Int J Legal Med 128:957–965CrossRefPubMedGoogle Scholar
  52. 52.
    van Rijn RR, Beek EJ, van de Putte EM et al (2017) The value of postmortem computed tomography in paediatric natural cause of death: a Dutch observational study. Pediatr Radiol 47:1514–1522CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jawad N, Brown K, Sebire NJ, Arthurs OJ (2016) Accuracy of paediatric intraosseous needle placement from post-mortem imaging. J Forensic Radiol Imaging 4:63–69CrossRefGoogle Scholar
  54. 54.
    Ford JM, Decker SJ (2016) Computed tomography slice thickness and its effects on three-dimensional reconstruction of anatomical structures. J Forensic Radiol Imaging 4:43–46CrossRefGoogle Scholar
  55. 55.
    Harty MP, Gould SW, Harcke HT et al (2015) The use of postmortem computed tomography (PMCT) in assessing pediatric deaths. Radiological Society of North America, ChicagoGoogle Scholar
  56. 56.
    Smith A, Lattin G Jr, Berran P, Harcke HT (2012) Common and expected postmortem CT observations involving the brain: mimics of antemortem pathology. AJNR Am J Neuroradiol 33:1387–1391CrossRefPubMedGoogle Scholar
  57. 57.
    Proisy M, Loget P, Bouvet R et al (2015) Non-specific post-mortem modifications on whole-body post-mortem computed tomography in sudden unexpected death in infancy. J Forensic Radiol Imaging 3:16–23CrossRefGoogle Scholar
  58. 58.
    Berger N, Ampanozi G, Scweitzer W et al (2015) Racking the brain: detection of cerebral edema on postmortem computed tomography compared with forensic autopsy. Eur J Radiol 84:643–651CrossRefPubMedGoogle Scholar
  59. 59.
    Ishida M, Gonoi W, Okuma H et al (2015) Common postmortem computed tomography findings following atraumatic death: differentation between normal postmortem changes and pathologic lesions. Korean J Radiol 16:798–809CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sieswerda-Hoogendoorn T, Beenen L, van Rijn RR (2015) Normal cranial postmortem CT findings in children. Forensic Sci Int 246:43–49CrossRefPubMedGoogle Scholar
  61. 61.
    Case ME (2014) Distinguishing accidental from inflicted head trauma at autopsy. Pediatr Radiol 44:S632–S640CrossRefPubMedGoogle Scholar
  62. 62.
    Okuma H, Gonoi A, Ishida M et al (2013) Heart wall is thicker on postmortem computed tomography than on antemortem computed tomography: the first longitudinal study. PLoS One 8:e76026CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Van Grinsven T, Lafebre SJ, Kubat B, Klein WM (2017) Postmortem changes in musculoskeletal and subcutaneous tissue. J Forensic Radiol Imaging 10:29–36CrossRefGoogle Scholar
  64. 64.
    Biljardt S, Brummel A, Tijhuis R et al (2015) Post-mortem fluid stasis in the sinus, trachea and mainstem bronchi; a computed tomography study in adults and children. J Forensic Radiol Imaging 3:162–166CrossRefGoogle Scholar
  65. 65.
    Barber JL, Kiho L, Sebire NJ, Arthurs OJ (2015) Interpretation of intravascular gas on postmortem CT in children. J Forensic Radiol Imaging 3:174–179CrossRefGoogle Scholar
  66. 66.
    Miller Z (2013) Forensic radiology at the New York City office of the chief medical examiner (NYC OCME): current US forensic radiology practices and reflections on the future. J Forensic Radiol Imaging 1:84CrossRefGoogle Scholar
  67. 67.
    Aalders M, Adolphi N, Daly B et al (2017) Research in forensic radiology and imaging; identifying the most important issues. J Forensic Radiol Imaging 8:1–8CrossRefGoogle Scholar
  68. 68.
    Judge-Kronis L, Hutchinson J, Sebire NJ, Arthurs OJ (2016) Consent for paediatric and perinatal postmortem investigations: implications of less invasive autopsy. J Forensic Radiol Imaging 4:7–11CrossRefGoogle Scholar
  69. 69.
    Berkovitz N, Tal S, Gottlieb P et al (2013) Introducing virtopsy into a country religiously opposed to autopsy. J Forensic Radiol Imaging 1:80CrossRefGoogle Scholar
  70. 70.
    Vester M, van Rijn RR (2015) A knot in the gut: a paediatric post-mortem CT diagnosis. J Forensic Radiol Imaging 3:238–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical ImagingNemours/Alfred I. duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Department of Biomedical ResearchNemours/Alfred I. duPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations