Imaging surveillance for children with predisposition to renal tumors

Abstract

Effective surveillance is necessary for early detection of tumors in children with cancer predisposition syndromes. Instituting a surveillance regimen in children comes with practical challenges that include determining imaging modality and timing, and considering cost efficiency, accessibility, and the significant consequences of false-positive and false-negative results. To address these challenges, the American Association for Cancer Research has recently published consensus recommendations that focus on surveillance of cancer predisposition syndromes in children. This review condenses the imaging surveillance recommendations for syndromes that carry a predisposition to renal tumors in childhood, and includes summaries of the predisposition syndromes and discussion of considerations of available imaging modalities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rahman N (2014) Realizing the promise of cancer predisposition genes. Nature 505:302–308

    CAS  Article  Google Scholar 

  2. 2.

    Brodeur GM, Nichols KE, Plon SE et al (2017) Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:e1–e5

    Article  Google Scholar 

  3. 3.

    McGee RB, Nichols KE (2016) Introduction to cancer genetic susceptibility syndromes. Hematology Am Soc Hematol Educ Program 2016:293–301

    Article  Google Scholar 

  4. 4.

    Foulkes WD, Kamihara J, Evans DGR et al (2017) Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:e62–e67

    CAS  Article  Google Scholar 

  5. 5.

    Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res 23:e54–e61

    CAS  Article  Google Scholar 

  6. 6.

    Zhang J, Walsh MF, Wu G et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373:2336–2346

    CAS  Article  Google Scholar 

  7. 7.

    Porteus MH, Narkool P, Neuberg D et al (2000) Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms' tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 18:2026–2031

    CAS  Article  Google Scholar 

  8. 8.

    Kratz CP, Achatz MI, Brugieres L et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23:e38–e45

  9. 9.

    Duffy KA, Grand KL, Zelley K, Kalish JM (2018) Tumor screening in Beckwith-Wiedemann syndrome: parental perspectives. J Genet Couns 27:844–853

    Article  Google Scholar 

  10. 10.

    McNeil DE, Brown M, Ching A, DeBaun MR (2001) Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol 37:349–356

    CAS  Article  Google Scholar 

  11. 11.

    Peng Y, Jia L, Sun N et al (2010) Assessment of cystic renal masses in children: comparison of multislice computed tomography and ultrasound imaging using the Bosniak classification system. Eur J Radiol 75:287–292

    Article  Google Scholar 

  12. 12.

    Guimaraes MD, Noschang J, Teixeira SR et al (2017) Whole-body MRI in pediatric patients with cancer. Cancer Imaging 17(6)

  13. 13.

    Malkin D (2014) Surveillance for children at genetic risk for cancer: are we ready? Pediatr Blood Cancer 61:1337–1338

    Article  Google Scholar 

  14. 14.

    Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298

    Article  Google Scholar 

  15. 15.

    Anupindi SA, Bedoya MA, Lindell RB et al (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgenol 205:400–408

    Article  Google Scholar 

  16. 16.

    Priesemann M, Davies KM, Perry LA et al (2006) Benefits of screening in von Hippel-Lindau disease — comparison of morbidity associated with initial tumours in affected parents and children. Horm Res 66:1–5

    CAS  PubMed  Google Scholar 

  17. 17.

    Jasperson KW, Kohlmann W, Gammon A et al (2014) Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Familial Cancer 13:257–265

    CAS  Article  Google Scholar 

  18. 18.

    Achatz MI, Porter CC, Brugieres L et al (2017) Cancer screening recommendations and clinical management of inherited gastrointestinal cancer syndromes in childhood. Clin Cancer Res 23:e107–e114

    Article  Google Scholar 

  19. 19.

    Kalish JM, Doros L, Helman LJ et al (2017) Surveillance recommendations for children with overgrowth syndromes and predisposition to Wilms tumors and hepatoblastoma. Clin Cancer Res 23:e115–e122

    CAS  Article  Google Scholar 

  20. 20.

    Maas SM, Vansenne F, Kadouch DJ et al (2016) Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A 170:2248–2260

    CAS  Article  Google Scholar 

  21. 21.

    Kalish JM, Deardorff MA (2016) Tumor screening in Beckwith-Wiedemann syndrome — to screen or not to screen? Am J Med Genet A 170:2261–2264

    Article  Google Scholar 

  22. 22.

    Fahmy J, Kaminsky CK, Parisi MT (1998) Perlman syndrome: a case report emphasizing its similarity to and distinction from Beckwith-Wiedemann and prune-belly syndromes. Pediatr Radiol 28:179–182

    CAS  Article  Google Scholar 

  23. 23.

    Williams RD, Chagtai T, Alcaide-German M et al (2015) Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6:7232–7243

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Schultz KAP, Rednam SP, Kamihara J et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e76–e82

    CAS  Article  Google Scholar 

  25. 25.

    Wasserman JD, Tomlinson GE, Druker H et al (2017) Multiple endocrine neoplasia and hyperparathyroid-jaw tumor syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e123–e132

    CAS  Article  Google Scholar 

  26. 26.

    Hartley AL, Birch JM, Tricker K et al (1993) Wilms' tumor in the Li-Fraumeni cancer family syndrome. Cancer Genet Cytogenet 67:133–135

  27. 27.

    Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75

    CAS  Article  Google Scholar 

  28. 28.

    Chung EM, Graeber AR, Conran RM (2016) Renal tumors of childhood: radiologic-pathologic correlation part 1. The 1st decade: from the radiologic pathology archives. Radiographics 36:499–522

    Article  Google Scholar 

  29. 29.

    Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49

    Article  Google Scholar 

  30. 30.

    Farley MN, Schmidt LS, Mester JL et al (2013) A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res 11:1061–1071

    CAS  Article  Google Scholar 

  31. 31.

    Mork M, Hubosky SG, Roupret M et al (2015) Lynch syndrome: a primer for urologists and panel recommendations. J Urol 194:21–29

    Article  Google Scholar 

  32. 32.

    Sijmons RH, Kiemeney LA, Witjes JA, Vasen HF (1998) Urinary tract cancer and hereditary nonpolyposis colorectal cancer: risks and screening options. J Urol 160:466–470

    CAS  Article  Google Scholar 

  33. 33.

    Barrow PJ, Ingham S, O'Hara C et al (2013) The spectrum of urological malignancy in lynch syndrome. Familial Cancer 12:57–63

    CAS  Article  Google Scholar 

  34. 34.

    Bakry D, Aronson M, Durno C et al (2014) Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 50:987–996

    Article  Google Scholar 

  35. 35.

    Vasen HF, Ghorbanoghli Z, Bourdeaut F et al (2014) Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European consortium "care for CMMR-D" (C4CMMR-D). J Med Genet 51:283–293

    CAS  Article  Google Scholar 

  36. 36.

    Durno CA, Aronson M, Tabori U et al (2012) Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year follow-up of a kindred. Pediatr Blood Cancer 59:652–656

    Article  Google Scholar 

  37. 37.

    Tabori U, Hansford JR, Achatz MI et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:e32–e37

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhay S. Srinivasan.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, A.S., Saade-Lemus, S., Servaes, S.E. et al. Imaging surveillance for children with predisposition to renal tumors. Pediatr Radiol 49, 1453–1462 (2019). https://doi.org/10.1007/s00247-019-04432-2

Download citation

Keywords

  • DICER1 syndrome
  • Hepatoblastoma predisposition syndromes
  • Kidney
  • Li–Fraumeni syndrome
  • Magnetic resonance imaging
  • Tumor
  • Ultrasound
  • Von Hippel–Lindau syndrome
  • Wilms tumor