Advertisement

Differential diagnosis of posterior fossa tumours in children: new insights

  • Felice D’Arco
  • Faraan Khan
  • Kshitij Mankad
  • Mario Ganau
  • Pablo Caro-Dominguez
  • Sotirios Bisdas
Pictorial Essay

Abstract

Central nervous system neoplasms are the most common solid tumours that develop in children, with the greatest proportion located in the infratentorium. The 2016 World Health Organization Central Nervous System tumour classification evolved from the 2007 edition with the integration of molecular and genetic profiling into the diagnosis, the addition of new entities and the removal of others. Radiology can assist with the subtyping of tumours from certain characteristics described below to provide prognostic information and guide further management. The latest insights into the radiologic characteristics of these posterior fossa tumours are presented below: medulloblastoma, ependymoma, pilocytic astrocytoma, embryonal tumours with multilayered rosettes, atypical teratoid rhabdoid tumours, diffuse midline glioma and the new entity of diffuse leptomeningeal glioneuronal tumours.

Keywords

Brain Children Magnetic resonance imaging Neoplasm Posterior fossa 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRefPubMedGoogle Scholar
  3. 3.
    Pollack IF (1994) Brain tumors in children. N Engl J Med 331:1500–1507CrossRefPubMedGoogle Scholar
  4. 4.
    Davis FG, McCarthy BJ (2000) Epidemiology of brain tumors. Curr Opin Neurol 13:635–640CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472CrossRefPubMedGoogle Scholar
  6. 6.
    Brandão LA, Young Poussaint T (2017) Posterior fossa tumors. Neuroimaging Clin N Am 27:1–37CrossRefPubMedGoogle Scholar
  7. 7.
    Perreault S, Ramaswamy V, Achrol AS et al (2014) MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 35:1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gibson P, Tong Y, Robinson G et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Patay Z, DeSain LA, Hwang SN et al (2015) MR imaging characteristics of wingless-type-subgroup pediatric medulloblastoma. AJNR Am J Neuroradiol 36:2386–2393CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Northcott PA, Korshunov A, Pfister SM, Taylor MD (2012) The clinical implications of medulloblastoma subgroups. Nat Rev Neurol 8:340–351CrossRefPubMedGoogle Scholar
  11. 11.
    Jin B, Feng XY (2013) MRI features of atypical teratoid/rhabdoid tumors in children. Pediatr Radiol 43:1001–1008CrossRefPubMedGoogle Scholar
  12. 12.
    Koral K, Gargan L, Bowers DC et al (2008) Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol 190:809–814CrossRefPubMedGoogle Scholar
  13. 13.
    Adamek D, Sofowora KD, Cwiklinska M et al (2013) Embryonal tumor with abundant neuropil and true rosettes: an autopsy case-based update and review of the literature. Childs Nerv Syst 29:849–854CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yuh EL, Barkovich AJ, Gupta N (2009) Imaging of ependymomas: MRI and CT. Childs Nerv Syst 25:1203–1213CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    U-King-Im JM, Taylor MD, Raybaud C (2010) Posterior fossa ependymomas: new radiological classification with surgical correlation. Childs Nerv Syst 26:1765–1772CrossRefPubMedGoogle Scholar
  17. 17.
    Chourmouzi D, Papadopoulou E, Konstantinidis M et al (2014) Manifestations of pilocytic astrocytoma: a pictorial review. Insights Imaging 5:387–402CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Louis DN, Giannini C, Capper D et al (2018) cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 135:639–642CrossRefPubMedGoogle Scholar
  19. 19.
    Löbel U, Sedlacik J, Reddick WE et al (2011) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32:315–322CrossRefPubMedGoogle Scholar
  20. 20.
    Aboian MS, Solomon DA, Felton E et al (2017) Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol 38:795–800CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gardiman MP, Fassan M, Orvieto E et al (2010) Diffuse leptomeningeal glioneuronal tumors: a new entity? Brain Pathol 20:361–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of Paediatric Neuroradiology, Department of RadiologyGreat Ormond Street Hospital NHS TrustLondonUK
  2. 2.Department of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoCanada
  3. 3.Department of Diagnostic ImagingHospital VIAMEDSevillaSpain
  4. 4.Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondonUK

Personalised recommendations