Advertisement

Pediatric Radiology

, Volume 48, Issue 7, pp 992–998 | Cite as

Clinical safety of 3-T brain magnetic resonance imaging in newborns

  • Monica Fumagalli
  • Claudia Maria Cinnante
  • Sonia Francesca Calloni
  • Gabriele Sorrentino
  • Ilaria Gorla
  • Laura Plevani
  • Nicola Pesenti
  • Ida Sirgiovanni
  • Fabio Mosca
  • Fabio Triulzi
Original Article

Abstract

Background

The effects and potential hazards of brain magnetic resonance imaging (MRI) at 3 T in newborns are debated.

Objective

Assess the impact of 3-T MRI in newborns on body temperature and physiological parameters.

Material and methods

Forty-nine newborns, born preterm and at term, underwent 3-T brain MRI at term-corrected age. Rectal and skin temperature, oxygen saturation and heart rate were recorded before, during and after the scan.

Results

A statistically significant increase in skin temperature of 0.6 °C was observed at the end of the MRI scan (P<0.01). There was no significant changes in rectal temperature, heart rate or oxygen saturation.

Conclusion

Core temperature, heart rate and oxygen saturation in newborns were not affected by 3-T brain MR scanning.

Keywords

3 Tesla Body temperature Brain Heart rate Magnetic resonance imaging Neonates Oxygen saturation Physiological parameters Safety 

Notes

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Dagia C, Ditchfield M (2008) 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol 68:309–319CrossRefGoogle Scholar
  2. 2.
    Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290CrossRefPubMedGoogle Scholar
  3. 3.
    Stokowski LA (2005) Ensuring safety for infants undergoing magnetic resonance imaging. Adv Neonatal Care 5:14–27CrossRefPubMedGoogle Scholar
  4. 4.
    Plaisier A, Raets MA, van der Starre C et al (2012) Safety of routine early MRI in preterm infants. Pediatr Radiol 42:1205–1211CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sirin S, Goericke SL, Huening BM et al (2013) Evaluation of 100 brain examinations using a 3 tesla MR-compatible incubator-safety, handling and image quality. Neuroradiology 55:1241–1249CrossRefPubMedGoogle Scholar
  6. 6.
    Chavhan GB, Babyn PS, Singh M et al (2009) MR imaging at 3.0 T in children: technical differences, safety issues, and initial experience. Radiographics 29:1451–1466CrossRefPubMedGoogle Scholar
  7. 7.
    Machann J, Schlemmer HP, Schick F (2008) Technical challenges and opportunities of whole-body magnetic resonance imaging at 3T. Phys Med 24:63–70CrossRefPubMedGoogle Scholar
  8. 8.
    Sessler DI (2016) Perioperative thermoregulation and heat balance. Lancet 387:2655–2664CrossRefPubMedGoogle Scholar
  9. 9.
    Benavente-Fernández I, Lubián-López PS, Zuazo-Ojeda MA et al (2010) Safety of magnetic resonance imaging in preterm infants. Acta Paediatr J 99:850–853CrossRefGoogle Scholar
  10. 10.
    Arthurs OJ, Edwards A, Austin T et al (2012) The challenges of neonatal magnetic resonance imaging. Pediatr Radiol 42:1183–1194CrossRefPubMedGoogle Scholar
  11. 11.
    Cawley P, Few K, Greenwood R et al (2016) Does magnetic resonance brain scanning at 3.0 tesla pose a hyperthermic challenge to term neonates? J Pediatr 175:228–230CrossRefPubMedGoogle Scholar
  12. 12.
    Isaacson DL, Yanosky DJ, Jones RA (2011) Effect of MRI strength and propofol sedation on pediatric core temperature change. J Magn Reson Imaging 33:950–956CrossRefPubMedGoogle Scholar
  13. 13.
    Schafer D, Boogaart S, Johnson L et al (2014) Comparison of neonatal skin sensor temperatures with axillary temperature: does skin sensor placement really matter? Adv Neonatal Care 14:52–60CrossRefPubMedGoogle Scholar
  14. 14.
    Smith J, Alcock G, Usher K (2013) Temperature measurement in the preterm and term neonate: a review of the literature. Neonatal Netw 32:16–25CrossRefPubMedGoogle Scholar
  15. 15.
    Van der Spek RD, van Lingen RA, van Zoeren-Grobben D (2009) Body temperature measurement in VLBW infants by continuous skin measurement is a good or even better alternative than continuous rectal measurement. Acta Paediatr 98:282–285Google Scholar
  16. 16.
    Bryan YF, Templeton TW, Nick TG et al (2006) Brain magnetic resonance imaging increases core body temperature in sedated children. Anesth Analg 102:1674–1679CrossRefPubMedGoogle Scholar
  17. 17.
    Machata AM, Willschke H, Kabon B et al (2009) Effect of brain magnetic resonance imaging on body core temperature in sedated infants and children. Br J Anaesth 102:385–389CrossRefPubMedGoogle Scholar
  18. 18.
    Chang KJ, Kamel IR, Macura KJ et al (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28:1983–1998CrossRefPubMedGoogle Scholar
  19. 19.
    Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. I. Technical considerations and clinical applications. Radiology 246:675–696Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Monica Fumagalli
    • 1
  • Claudia Maria Cinnante
    • 2
  • Sonia Francesca Calloni
    • 3
  • Gabriele Sorrentino
    • 1
  • Ilaria Gorla
    • 1
  • Laura Plevani
    • 4
  • Nicola Pesenti
    • 1
  • Ida Sirgiovanni
    • 1
  • Fabio Mosca
    • 1
  • Fabio Triulzi
    • 2
    • 5
  1. 1.NICU, Department of Clinical Sciences & Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoUniversità degli Studi di MilanoMilanItaly
  2. 2.Neuroradiology UnitFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  3. 3.Postgraduation School in RadiodiagnosticsUniversità degli Studi di MilanoMilanItaly
  4. 4.Nursing coordinator S.I.T.R.A. Basic Education Sector–Neonatology and Neonatal Intensive CareFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  5. 5.Department of Pathophysiology and TransplantationUniversità degli Studi di MilanoMilanItaly

Personalised recommendations