Skip to main content
Log in

Cone-beam CT in paediatric dentistry: DIMITRA project position statement

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

DIMITRA (dentomaxillofacial paediatric imaging: an investigation towards low-dose radiation induced risks) is a European multicenter and multidisciplinary project focused on optimizing cone-beam CT exposures for children and adolescents. With increasing use of cone-beam CT for dentomaxillofacial diagnostics, concern arises regarding radiation risks associated with this imaging modality, especially for children. Research evidence concerning cone-beam CT indications in children remains limited, while reports mention inconsistent recommendations for dose reduction. Furthermore, there is no paper using the combined and integrated information on the required indication-oriented image quality and the related patient dose levels. In this paper, therefore, the authors initiate an integrated approach based on current evidence regarding image quality and dose, together with the expertise of DIMITRA’s members searching for a state of the art. The aim of this DIMITRA position statement is to provide indication-oriented and patient-specific recommendations regarding the main cone-beam CT applications in the pediatric field. The authors will review this position statement document when results regarding multidisciplinary approaches evolve, in a period of 5 years or earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. White SC, Scarfe WC, Schulze RKW et al (2014) The image gently in dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children. Oral Surg Oral Med Oral Pathol Oral Radiol 118:257–261

    Article  PubMed  Google Scholar 

  2. May JJ, Cohenca N, Peters OA (2013) Contemporary management of horizontal root fractures to the permanent dentition: diagnosis — radiologic assessment to include cone-beam computed tomography. J Endod 39:S20–S25

    Article  PubMed  Google Scholar 

  3. European Commission (2012) Radiation protection No. 172: Cone beam CT for dental and maxillofacial radiology (evidence-based guidelines). http://www.sedentexct.eu/files/radiation_protection_172.pdf. Accessed 6 Oct 2017

  4. Kapila S, Conley RS, Harrell WE (2011) The current status of cone beam computed tomography imaging in orthodontics. Dentomaxillofac Radiol 40:24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaju PP, Jaju SP (2015) Cone-beam computed tomography: time to move from ALARA to ALADA. Imaging Sci Dent 45:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aps JKM (2013) Cone beam computed tomography in paediatric dentistry: overview of recent literature. Eur Arch Paediatr Dent 14:131–140

    Article  CAS  PubMed  Google Scholar 

  7. Hidalgo-Rivas JA, Theodorakou C, Carmichael F et al (2014) Use of cone beam CT in children and young people in three United Kingdom dental hospitals. Int J Paediatr Dent 24:336–348

    Article  PubMed  Google Scholar 

  8. Bushberg JT (2015) Eleventh annual Warren K. Sinclair keynote address — science, radiation protection and NCRP: building on the past, looking to the future. Health Phys 108:115–123

    Article  CAS  PubMed  Google Scholar 

  9. Theodorakou C, Walker A, Horner K et al (2012) Estimation of paediatric organ and effective doses from dental cone beam CT using anthropomorphic phantoms. Br J Radiol 85:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ludlow JB, Timothy R, Walker C et al (2015) Effective dose of dental CBCT — a meta-analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 44:20140197

    Article  CAS  PubMed  Google Scholar 

  11. Lai CS, Suter VGA, Katsaros C et al (2014) Localization of impacted maxillary canines and root resorption of neighbouring teeth: a study assessing the diagnostic value of panoramic radiographs in two groups of observers. Eur J Orthod 36:450–456

    Article  PubMed  Google Scholar 

  12. Alqerban A, Jacobs R, van Keirsbilck P-J et al (2014) The effect of using CBCT in the diagnosis of canine impaction and its impact on the orthodontic treatment outcome. J Orthod Sci 3:34–40

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doğramaci EJ, Sherriff M, Rossi-Fedele G et al (2015) Location and severity of root resorption related to impacted maxillary canines: a cone beam computed tomography (CBCT) evaluation. Aust Orthod J 31:49–58

    PubMed  Google Scholar 

  14. Alqerban A, Jacobs R, Fieuws S et al (2015) Radiographic predictors for maxillary canine impaction. Am J Orthod Dentofac Orthop 147:345–354

    Article  Google Scholar 

  15. Tadinada A, Mahdian M, Vishwanath M et al (2015) Evaluation of alveolar bone dimensions in unilateral palatally impacted canine: a cone-beam computed tomographic analyses. Eur J Orthod 37:596–602

    Article  PubMed  Google Scholar 

  16. Kamburoğlu K, Onder B, Murat S et al (2013) Radiographic detection of artificially created horizontal root fracture using different cone beam CT units with small fields of view. Dentomaxillofac Radiol 42:20120261

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fagundes Ddos S, de Mendonça IL, de Albuquerque MT et al (2014) Spontaneous healing responses detected by cone-beam computed tomography of horizontal root fractures: a report of two cases. Dent Traumatol 30:484–487

    Article  PubMed  Google Scholar 

  18. Jones D, Mannocci F, Andiappan M et al (2015) The effect of alteration of the exposure parameters of a cone-beam computed tomographic scan on the diagnosis of simulated horizontal root fractures. J Endod 41:520–525

    Article  PubMed  Google Scholar 

  19. Lima TF, Gamba TO, Zaia AA et al (2016) Evaluation of cone beam computed tomography and periapical radiography in the diagnosis of root resorption. Aust Dent J 61:425–431

    Article  CAS  PubMed  Google Scholar 

  20. Kyriakou Y, Kalender WA (2007) X-ray scatter data for flat-panel detector CT. Phys Med 23:3–15

    Article  PubMed  Google Scholar 

  21. Aootaphao S, Thongvigitmanee SS, Rajruangrabin J et al (2016) X-ray scatter correction on soft tissue images for portable cone beam CT. Biomed Res Int 2016:3262795

  22. Alqerban A, Jacobs R, Fieuws S et al (2011) Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod 33:93–102

    Article  PubMed  Google Scholar 

  23. Kullman L, Al Sane M (2012) Guidelines for dental radiography immediately after a dento-alveolar trauma, a systematic literature review. Dent Traumatol 28:193–199

    Article  PubMed  Google Scholar 

  24. Flores MT, Andersson L, Andreasen JO et al (2007) Guidelines for the management of traumatic dental injuries. I. Fractures and luxations of permanent teeth. Dent Traumatol 23:66–71

    Article  PubMed  Google Scholar 

  25. Bornstein MM, Wölner-Hanssen AB, Sendi P et al (2009) Comparison of intraoral radiography and limited cone beam computed tomography for the assessment of root-fractured permanent teeth. Dent Traumatol 25:571–577

    Article  PubMed  Google Scholar 

  26. Cotton TP, Geisler TM, Holden DT et al (2007) Endodontic applications of cone-beam volumetric tomography. J Endod 33:1121–1132

    Article  PubMed  Google Scholar 

  27. Kositbowornchai S, Sikram S, Nuansakul R et al (2003) Root fracture detection on digital images: effect of the zoom function. Dent Traumatol 19:154–159

    Article  PubMed  Google Scholar 

  28. Owusu JA, Bellile E, Moyer JS et al (2016) Patterns of pediatric mandible fractures in the United States. JAMA Facial Plast Surg 18:37–41

    Article  PubMed  Google Scholar 

  29. Emerich K, Wyszkowski J (2010) Clinical practice: dental trauma. Eur J Pediatr 169:1045–1050

    Article  PubMed  Google Scholar 

  30. Stavropoulos A, Wenzel A (2007) Accuracy of cone beam dental CT, intraoral digital and conventional film radiography for the detection of periapical lesions. An ex vivo study in pig jaws. Clin Oral Investig 11:101–106

    Article  PubMed  Google Scholar 

  31. Lofthag-Hansen S, Huumonen S, Gröndahl K et al (2007) Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:114–119

    Article  PubMed  Google Scholar 

  32. Andreasen FM, Sewerin I, Mandel U et al (1987) Radiographic assessment of simulated root resorption cavities. Endod Dent Traumatol 3:21–27

    Article  CAS  PubMed  Google Scholar 

  33. Oenning ACC, de Azevedo Vaz SL, Melo SLS et al (2013) Usefulness of cone-beam CT in the evaluation of a spontaneously healed root fracture case. Dent Traumatol 29:489–493

    Article  PubMed  Google Scholar 

  34. Makowiecki P, Witek A, Pol J et al (2014) The maintenance of pulp health 17 years after root fracture in a maxillary incisor illustrating the diagnostic benefits of cone bean computed tomography. Int Endod J 47:889–895

    Article  CAS  PubMed  Google Scholar 

  35. Kuijpers MAR, Pazera A, Admiraal RJ et al (2014) Incidental findings on cone beam computed tomography scans in cleft lip and palate patients. Clin Oral Investig 18:1237–1244

    Article  PubMed  Google Scholar 

  36. Starbuck JM, Ghoneima A, Kula K (2015) Bilateral cleft lip and palate: a morphometric analysis of facial skeletal form using cone beam computed tomography. Clin Anat 28:584–592

    Article  PubMed  Google Scholar 

  37. Ercan E, Celikoglu M, Buyuk SK et al (2015) Assessment of the alveolar bone support of patients with unilateral cleft lip and palate: a cone-beam computed tomography study. Angle Orthod 85:1003–1008

    Article  PubMed  Google Scholar 

  38. de Rezende Barbosa GL, Wood JS, Pimenta LA et al (2016) Comparison of different methods to assess alveolar cleft defects in cone beam CT images. Dentomaxillofac Radiol 45:20150332

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Moura PM, Hallac RR, Seaward JR et al (2016) Objective and subjective image evaluation of maxillary alveolar bone based on cone beam computed tomography exposure parameters. Oral Surg Oral Med Oral Pathol Oral Radiol 121:557–565

    Article  PubMed  Google Scholar 

  40. Dissaux C, Bodin F, Grollemund B et al (2016) Evaluation of success of alveolar cleft bone graft performed at 5 years versus 10 years of age. J Craniomaxillofac Surg 44:21–26

    Article  PubMed  Google Scholar 

  41. de Rezende Barbosa GL, Emodi O, Pretti H et al (2016) GAND classification and volumetric assessment of unilateral cleft lip and palate malformations using cone beam computed tomography. Int J Oral Maxillofac Surg 45:1333–1340

    Article  Google Scholar 

  42. Celikoglu M, Buyuk SK, Sekerci AE et al (2014) Facial soft-tissue thickness in patients affected by bilateral cleft lip and palate: a retrospective cone-beam computed tomography study. Am J Orthod Dentofac Orthop 146:573–578

    Article  Google Scholar 

  43. Suomalainen A, Åberg T, Rautio J et al (2014) Cone beam computed tomography in the assessment of alveolar bone grafting in children with unilateral cleft lip and palate. Eur J Orthod 36:603–611

    Article  PubMed  Google Scholar 

  44. Celikoglu M, Buyuk SK, Sekerci AE et al (2015) Maxillary dental anomalies in patients with cleft lip and palate: a cone beam computed tomography study. J Clin Pediatr Dent 39:183–186

    Article  CAS  PubMed  Google Scholar 

  45. Celebi AA, Ucar FI, Sekerci AE et al (2015) Effects of cleft lip and palate on the development of permanent upper central incisors: a cone-beam computed tomography study. Eur J Orthod 37:544–549

    Article  PubMed  Google Scholar 

  46. Helms JA, Speidel TM, Denis KL (1987) Effect of timing on long-term clinical success of alveolar cleft bone grafts. Am J Orthod Dentofac Orthop 92:232–240

    Article  CAS  Google Scholar 

  47. Bergland O, Semb G, Abyholm FE (1986) Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J 23:175–205

    CAS  PubMed  Google Scholar 

  48. Choi HS, Choi HG, Kim SH et al (2012) Influence of the alveolar cleft type on preoperative estimation using 3D CT assessment for alveolar cleft. Arch Plast Surg 39:477–482

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:106–114

    Article  PubMed  Google Scholar 

  50. Hamada Y, Kondoh T, Noguchi K et al (2005) Application of limited cone beam computed tomography to clinical assessment of alveolar bone grafting: a preliminary report. Cleft Palate Craniofac J 42:128–137

    Article  PubMed  Google Scholar 

  51. Sahai S, Kaveriappa S, Arora H et al (2011) 3-D imaging in post-traumatic malformation and eruptive disturbance in permanent incisors: a case report. Dent Traumatol 27:473–477

    Article  PubMed  Google Scholar 

  52. Mahesh R, Kanimozhi IG, Sivakumar M (2014) Dilaceration and eruption disturbances in permanent teeth: a sequelae of trauma to their predecessors-diagnosis and treatment using cone beam CT. J Clin Diagn Res 8:ZD10–ZD12

    Google Scholar 

  53. Bahadure RN, Thosar N, Khubchandani M (2013) Orthodontic extrusion: diagnosis and treatment with CBCT in a pediatric patient. Gen Dent 61:e5–e7

    PubMed  Google Scholar 

  54. Sun H, Hu R, Ren M et al (2016) The treatment timing of labial inversely impacted maxillary central incisors: a prospective study. Angle Orthod 86:768–774

    Article  PubMed  Google Scholar 

  55. Capar ID, Ertas H, Arslan H et al (2015) A retrospective comparative study of cone-beam computed tomography versus rendered panoramic images in identifying the presence, types, and characteristics of dens invaginatus in a Turkish population. J Endod 41:473–478

    Article  PubMed  Google Scholar 

  56. Cantín M, Fonseca GM (2013) Dens invaginatus in an impacted mesiodens: a morphological study. Romanian J Morphol Embryol 54:879–884

    Google Scholar 

  57. Doğramacı EJ, Rossi-Fedele G, McDonald F (2014) Clinical importance of incidental findings reported on small-volume dental cone beam computed tomography scans focused on impacted maxillary canine teeth. Oral Surg Oral Med Oral Pathol Oral Radiol 118:e205–e209

    Article  PubMed  Google Scholar 

  58. Tsodoulos S, Ilia A, Antoniades K et al (2014) Cherubism: a case report of a three-generation inheritance and literature review. J Oral Maxillofac Surg 72:405.e1–9

    Article  PubMed  Google Scholar 

  59. Levarek RE, Wiltz MJ, Kelsch RD et al (2014) Surgical management of the buccal bifurcation cyst: bone grafting as a treatment adjunct to enucleation and curettage. J Oral Maxillofac Surg 72:1966–1973

    Article  PubMed  Google Scholar 

  60. Jiang M, You M, Wang H et al (2014) Characteristic features of the adenomatoid odontogenic tumour on cone beam CT. Dentomaxillofac Radiol 43:20140016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. MacDonald D (2016) Lesions of the jaws presenting as radiolucencies on cone-beam CT. Clin Radiol 71:972–985

    Article  CAS  PubMed  Google Scholar 

  62. Lopes IA, Tucunduva RMA, Handem RH et al (2017) Study of the frequency and location of incidental findings of the maxillofacial region in different fields of view in CBCT scans. Dentomaxillofac Radiol 46:20160215

    Article  PubMed  Google Scholar 

  63. Gaia BF, de Sales MAO, Perrella A et al (2011) Comparison between cone-beam and multislice computed tomography for identification of simulated bone lesions. Braz Oral Res 25:362–368

    Article  PubMed  Google Scholar 

  64. Pompura JR, Sándor GK, Stoneman DW (1997) The buccal bifurcation cyst: a prospective study of treatment outcomes in 44 sites. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83:215–221

    Article  CAS  PubMed  Google Scholar 

  65. Friedrich RE, Scheuer HA, Zustin J (2014) Inflammatory paradental cyst of the first molar (buccal bifurcation cyst) in a 6-year-old boy: case report with respect to immunohistochemical findings. In Vivo 28:333–339

    PubMed  Google Scholar 

  66. Assaf AT, Benecke AW, Riecke B et al (2012) Craniofacial fibrous dysplasia (CFD) of the maxilla in an 11-year old boy: a case report. J Craniomaxillofac Surg 40:788–792

    Article  PubMed  Google Scholar 

  67. Shahbazian M, Jacobs R, Wyatt J et al (2010) Accuracy and surgical feasibility of a CBCT-based stereolithographic surgical guide aiding autotransplantation of teeth: in vitro validation. J Oral Rehabil 37:854–859

    Article  CAS  PubMed  Google Scholar 

  68. Shahbazian M, Jacobs R, Wyatt J et al (2013) Validation of the cone beam computed tomography-based stereolithographic surgical guide aiding autotransplantation of teeth: clinical case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol 115:667–675

    Article  PubMed  Google Scholar 

  69. EzEldeen M, Stratis A, Coucke W et al (2016) As low dose as sufficient quality: optimization of cone-beam computed tomographic scanning protocol for tooth autotransplantation planning and follow-up in children. J Endod 43:210–217

    Article  PubMed  Google Scholar 

  70. Verweij JP, Jongkees FA, Anssari Moin D et al (2017) Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review. Int J Oral Maxillofac Surg 46:1466–1474

    Article  CAS  PubMed  Google Scholar 

  71. Lu H, Zeng B, Yu D et al (2015) Complex dental anomalies in a belatedly diagnosed cleidocranial dysplasia patient. Imaging Sci Dent 45:187–192

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dalessandri D, Laffranchi L, Tonni I et al (2011) Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: a case report. Head Face Med 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  73. Damasceno JX, Couto JLP, Alves KSDS et al (2014) Generalized odontodysplasia in a 5-year-old patient with Hallermann-Streiff syndrome: clinical aspects, cone beam computed tomography findings, and conservative clinical approach. Oral Surg Oral Med Oral Pathol Oral Radiol 118:e58–e64

    Article  PubMed  Google Scholar 

  74. Diniz-Freitas M, Seoane-Romero J, Fernández-Varela M et al (2015) Cone beam computed tomography evaluation of palatal bone thickness for miniscrew placement in Down's syndrome. Arch Oral Biol 60:1333–1339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Atomic Energy Community’s Seventh Framework Programme FP7/2007–2011 under grant agreement No. 604984 (OPERRA: Open Project for the European Radiation Research Area).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Benjamin Salmon.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oenning, A.C., Jacobs, R., Pauwels, R. et al. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol 48, 308–316 (2018). https://doi.org/10.1007/s00247-017-4012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-4012-9

Keywords

Navigation