Skip to main content

Advertisement

Log in

Imaging of temporomandibular joint abnormalities in juvenile idiopathic arthritis with a focus on developing a magnetic resonance imaging protocol

  • Minisymposium: Juvenile Idiopathic Arthritis
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Inflammation and damage in the temporomandibular joint (TMJ) often develop without clinical symptoms but can lead to severe facial growth abnormalities and impaired health-related quality of life, making early diagnosis of TMJ changes crucial to identify. Inflammatory and osteochondral changes detectable through magnetic resonance imaging (MRI) occur in TMJs of approximately 40% of children with juvenile idiopathic arthritis (JIA), and no other imaging modality or physical method of examination can reliably detect these changes. Therefore contrast-enhanced MRI is the diagnostic standard for diagnosis and interval monitoring of JIA. However the specific usage of MRI for TMJ arthritis is not standardized at present. There is a recognized need for a consensus effort toward standardization of an imaging protocol with required and optional sequences to improve detection of pathological changes and shorten study time. Such a consensus imaging protocol is important for providing maximum information with minimally necessary sequences in a way that allows inter-site comparison of results of clinical trials and improved clinical management. In this paper we describe the challenges of TMJ imaging and present expert-panel consensus suggestions for a standardized TMJ MRI protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manners PJ, Bower C (2002) Worldwide prevalence of juvenile arthritis why does it vary so much? J Rheumatol 29:1520–1530

    PubMed  Google Scholar 

  2. Larheim TA, Doria AS, Kirkhus E et al (2015) TMJ imaging in JIA patients — an overview. Semin Orthod 21:102–110

    Article  Google Scholar 

  3. Cannizzaro E, Schroeder S, Müller LM et al (2011) Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol 38:510–515

    Article  PubMed  Google Scholar 

  4. Stoll ML, Sharpe T, Beukelman T et al (2012) Risk factors for temporomandibular joint arthritis in children with juvenile idiopathic arthritis. J Rheumatol 39:1880–1887

    Article  PubMed  Google Scholar 

  5. Koos B, Twilt M, Kyank U et al (2014) Reliability of clinical symptoms in diagnosing temporomandibular joint arthritis in juvenile idiopathic arthritis. J Rheumatol 41:1871–1877

    Article  PubMed  Google Scholar 

  6. Muller L, Kellenberger CJ, Cannizzaro E et al (2009) Early diagnosis of temporomandibular joint involvement in juvenile idiopathic arthritis: a pilot study comparing clinical examination and ultrasound to magnetic resonance imaging. Rheumatology 48:680–685

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stoustrup P, Twilt M, Spiegel L et al (2017) Clinical orofacial examination in juvenile idiopathic arthritis: international consensus-based recommendations for monitoring patients in clinical practice and research studies. J Rheumatol 44:326–333

    Article  PubMed  Google Scholar 

  8. Frid P, Nordal E, Bovis F et al (2017) Temporomandibular joint involvement in association with quality of life, disability, and high disease activity in juvenile idiopathic arthritis. Arthritis Care Res 69:677–686

    Article  Google Scholar 

  9. El Assar de la Fuente S, Angenete O, Jellestad S et al (2016) Juvenile idiopathic arthritis and the temporomandibular joint: a comprehensive review. J Craniomaxillofac Surg 44:597–607

    Article  PubMed  Google Scholar 

  10. Weiss PF, Arabshahi B, Johnson A et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 58:1189–1196

    Article  PubMed  Google Scholar 

  11. Fryback DG, Thornbury JR (1991) The efficacy of diagnostic imaging. Med Decis Mak 11:88–94

    Article  CAS  Google Scholar 

  12. Twilt M, Schulten AJM, Verschure F et al (2008) Long-term followup of temporomandibular joint involvement in juvenile idiopathic arthritis. Arthritis Care Res 59:546–552

    Article  Google Scholar 

  13. Arvidsson LZ, Flatø B, Larheim TA (2009) Radiographic TMJ abnormalities in patients with juvenile idiopathic arthritis followed for 27 years. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:114–123

    Google Scholar 

  14. Pedersen TK, Jensen JJ, Melsen B et al (2001) Resorption of the temporomandibular condylar bone according to subtypes of juvenile chronic arthritis. J Rheumatol 28:2109–2115

    PubMed  CAS  Google Scholar 

  15. Billiau AD, Hu Y, Verdonck A et al (2007) Temporomandibular joint arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, and relation to dentofacial morphology. J Rheumatol 34:1925–1933

    PubMed  Google Scholar 

  16. Larheim TA, Abrahamsson A-K, Kristensen M et al (2014) Temporomandibular joint diagnostics using CBCT. Dentomaxillofacial Radiol 44:20140235

    Article  Google Scholar 

  17. Farronato G, Garagiola U, Carletti V et al (2010) Change in condylar and mandibular morphology in juvenile idiopathic arthritis: cone beam volumetric imaging. Minerva Stomatol 59:519–534

    PubMed  CAS  Google Scholar 

  18. Ferraz AML Jr, Devito KL, Guimarães JP (2012) Temporomandibular disorder in patients with juvenile idiopathic arthritis: clinical evaluation and correlation with the findings of cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 114:e51–e57

  19. González MFO, Pedersen TK, Dalstra M et al (2016) 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: a retrospective follow-up. Angle Orthod 86:846–853

    Article  PubMed  Google Scholar 

  20. Al-Shwaikh H, Urtane I, Pirttiniemi P et al (2016) Radiologic features of temporomandibular joint osseous structures in children with juvenile idiopathic arthritis. Cone beam computed tomography study. Stomatologija 18:51–60

    PubMed  Google Scholar 

  21. Resnick CM, Dang R, Henderson LA et al (2017) Frequency and morbidity of temporomandibular joint involvement in adult patients with a history of juvenile idiopathic arthritis. J Oral Maxillofac Surg 75:1191–1200

    Article  PubMed  Google Scholar 

  22. Karlo CA, Stolzmann P, Habernig S et al (2010) Size, shape and age-related changes of the mandibular condyle during childhood. Eur Radiol 20:2512–2517

    Article  PubMed  Google Scholar 

  23. Kirkhus E, Gunderson RB, Smith H-J et al (2016) Temporomandibular joint involvement in childhood arthritis: comparison of ultrasonography-assessed capsular width and MRI-assessed synovitis. Dentomaxillofacial Radiol 45:20160195

    Article  Google Scholar 

  24. Katzberg RW (2012) Is Ultrasonography of the temporomandibular joint ready for prime time? Is there a “window” of opportunity? J Oral Maxillofac Surg 70:1310–1314

    Article  PubMed  Google Scholar 

  25. Meyers AB, Oberle EJ (2016) Sonographic evaluation of the temporomandibular joint: uses and limitations. J Ultrasound Med 35:452–453

    Article  PubMed  Google Scholar 

  26. Assaf AT, Kahl-Nieke B, Feddersen J et al (2013) Is high-resolution ultrasonography suitable for the detection of temporomandibular joint involvement in children with juvenile idiopathic arthritis? Dentomaxillofacial Radiol 20110379:42

    Google Scholar 

  27. Manfredini D, Guarda-Nardini L (2009) Ultrasonography of the temporomandibular joint: a literature review. Int J Oral Maxillofac Surg 38:1229–1236

    Article  PubMed  CAS  Google Scholar 

  28. Hemke R, van Rossum MAJ, van Veenendaal M et al (2013) Reliability and responsiveness of the juvenile arthritis MRI scoring (JAMRIS) system for the knee. Eur Radiol 23:1075–1083

    Article  PubMed  Google Scholar 

  29. Nusman CM, Muller L-SO, Hemke R et al (2016) Current status of efforts on standardizing magnetic resonance imaging of juvenile idiopathic arthritis: report from the OMERACT MRI in JIA Working Group and Health-e-Child. J Rheumatol 43:239–244

    Article  PubMed  Google Scholar 

  30. Koos B, Tzaribachev N, Bott S et al (2013) Classification of temporomandibular joint erosion, arthritis, and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop Fortschr Kieferorthop 74:506–519

    Article  CAS  Google Scholar 

  31. Vaid YN, Dunnavant FD, Royal SA et al (2014) Imaging of the temporomandibular joint in juvenile idiopathic arthritis. Arthritis Care Res 66:47–54

    Article  Google Scholar 

  32. Kellenberger CJ, Arvidsson LZ, Larheim TA (2015) Magnetic resonance imaging of temporomandibular joints in juvenile idiopathic arthritis. Semin Orthod 21:111–120

    Article  Google Scholar 

  33. Lochbühler N, Saurenmann RK, Müller L et al (2015) Magnetic resonance imaging assessment of temporomandibular joint involvement and mandibular growth following corticosteroid injection in juvenile idiopathic arthritis. J Rheumatol 42:1514–1522

    Article  PubMed  CAS  Google Scholar 

  34. Hauser RA, Schroeder S, Cannizzaro E et al (2014) How important is early magnetic resonance imaging of the temporomandibular joint for the treatment of children with juvenile idiopathic arthritis: a retrospective analysis. Pediatr Rheumatol 12:36

    Article  Google Scholar 

  35. Bucheli J, Ettlin D, Kellenberger CJ (2017) Temporomandibular joint MRI findings in adolescents with primary disk displacement in comparison to those in juvenile idiopathic arthritis. Pediatr Radiol 47:S354

    Google Scholar 

  36. Bolhalder A, Patcas R, Eichenberger M et al (2017) Midterm MRI follow-up of TMJ inflammation, deformation and mandibular growth in JIA patients under systemic treatment. Pediatr Radiol 47:S354–S355

    Google Scholar 

  37. Hamardzumyan Schmid A, Kellenberger CJ (2017) Quantitative grading of TMJ synovitis in children with JIA — influence of MR-coil, timing after contrast-injection and location of measurements on joint-to-muscle enhancement ratio. Pediatr Radiol 47:S376

    Google Scholar 

  38. Tolend M, Twilt M, Cron RQ et al (2017) Towards establishing a standardized magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res. https://doi.org/10.1002/acr.23340

  39. Boers M, Kirwan JR, Wells G et al (2014) Developing core outcome measurement sets for clinical trials: OMERACT filter 2.0. J Clin Epidemiol 67:745–753

    Article  PubMed  Google Scholar 

  40. Kottke R, Saurenmann RK, Schneider MM et al (2015) Contrast-enhanced MRI of the temporomandibular joint: findings in children without juvenile idiopathic arthritis. Acta Radiol 56:1145–1152

    Article  PubMed  Google Scholar 

  41. Tzaribachev N, Fritz J, Horger M (2009) Spectrum of magnetic resonance imaging appearances of juvenile temporomandibular joints (TMJ) in non-rheumatic children. Acta Radiol 50:1182–1186

    Article  PubMed  CAS  Google Scholar 

  42. Ma GMY, Amirabadi A, Inarejos E et al (2015) MRI thresholds for discrimination between normal and mild temporomandibular joint involvement in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 13:53

    Article  PubMed  PubMed Central  Google Scholar 

  43. von Kalle T, Winkler P, Stuber T (2013) Contrast-enhanced MRI of normal temporomandibular joints in children — is there enhancement or not? Rheumatology 52:363–367

    Article  Google Scholar 

  44. Karlo CA, Patcas R, Kau T et al (2012) MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference. Eur Radiol 22:1579–1585

    Article  PubMed  Google Scholar 

  45. Ruperto N, Meiorin S, Iusan S et al (2008) Consensus procedures and their role in pediatric rheumatology. Curr Rheumatol Rep 10:142–146

    Article  PubMed  Google Scholar 

  46. Johnson K (2006) Imaging of juvenile idiopathic arthritis. Pediatr Radiol 36:743–758

    Article  PubMed  Google Scholar 

  47. Smith HJ, Larheim TA, Aspestrand F (1992) Rheumatic and nonrheumatic disease in the temporomandibular joint: gadolinium-enhanced MR imaging. Radiology 185:229–234

    Article  PubMed  CAS  Google Scholar 

  48. von Kalle T, Stuber T, Winkler P et al (2015) Early detection of temporomandibular joint arthritis in children with juvenile idiopathic arthritis — the role of contrast-enhanced MRI. Pediatr Radiol 45:402–410

    Article  Google Scholar 

  49. Resnick CM, Vakilian PM, Breen M et al (2016) Quantifying temporomandibular joint synovitis in children with juvenile idiopathic arthritis. Arthritis Care Res 68:1795–1802

    Article  CAS  Google Scholar 

  50. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ et al (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1:479–488

    Article  PubMed  CAS  Google Scholar 

  51. Bae S, Lee H-J, Han K et al (2017) Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol 27:3353–3361

    Article  PubMed  Google Scholar 

  52. Murata N, Murata K, Gonzalez-Cuyar LF et al (2016) Gadolinium tissue deposition in brain and bone. Magn Reson Imaging 34:1359–1365

    Article  PubMed  CAS  Google Scholar 

  53. Kuno H, Jara H, Buch K et al (2016) Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents. Radiology 283:195–204

    Article  PubMed  Google Scholar 

  54. Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791

    Article  PubMed  Google Scholar 

  55. Gold GE, Busse RF, Beehler C et al (2007) Isotropic MRI of the knee with 3D fast spin-echo extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 188:1287–1293

    Article  PubMed  Google Scholar 

  56. Barnabe C, Toepfer D, Marotte H et al (2016) Definition for rheumatoid arthritis erosions imaged with high resolution peripheral quantitative computed tomography and interreader reliability for detection and measurement. J Rheumatol 43:1935–1940

    Article  PubMed  Google Scholar 

  57. Kirkhus E, Arvidsson LZ, Smith H-J et al (2016) Disk abnormality coexists with any degree of synovial and osseous abnormality in the temporomandibular joints of children with juvenile idiopathic arthritis. Pediatr Radiol 46:331–341

    Article  PubMed  Google Scholar 

  58. Markic G, Müller L, Patcas R et al (2015) Assessing the length of the mandibular ramus and the condylar process: a comparison of OPG, CBCT, CT, MRI, and lateral cephalometric measurements. Eur J Orthod 37:13–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Yoginder Vaid for his participation and valuable feedback in the initial stages of the consensus imaging protocol development meetings, and also Prof. Karen Rosendahl for her constructive comments to the manuscript. Profs. Kellenberger and Larheim contributed equally as senior authors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirkamal Tolend.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, E., Inarejos Clemente, E.J., Tzaribachev, N. et al. Imaging of temporomandibular joint abnormalities in juvenile idiopathic arthritis with a focus on developing a magnetic resonance imaging protocol. Pediatr Radiol 48, 792–800 (2018). https://doi.org/10.1007/s00247-017-4005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-4005-8

Keywords

Navigation