Skip to main content

Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

Abstract

Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk–benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Stern KWD, Gauvreau K, Geva T et al (2014) The impact of procedural sedation on diagnostic errors in pediatric echocardiography. J Am Soc Echocardiogr 27:949–955

  2. 2.

    Grunwell JR, McCracken C, Fortenberry J et al (2014) Risk factors leading to failed procedural sedation in children outside the operating room. Pediatr Emerg Care 30:381–387

    Article  PubMed  Google Scholar 

  3. 3.

    Schmidt MH, Marshall J, Downie J et al (2011) Pediatric magnetic resonance research and the minimal-risk standard. IRB 33:1–6

    PubMed  Google Scholar 

  4. 4.

    Stratmann G, Lee J, Sall JW et al (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39:2275–2287

  5. 5.

    DiMaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  7. 7.

    Daldrup-Link HE, Sammet C, Hernanz-Schulman M et al (2016) White paper on P4 concepts for pediatric imaging. J Am Coll Radiol 13:590–597.e2

  8. 8.

    Zhang T, Grafendorfer T, Cheng JY et al (2016) A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T. Magn Reson Med 76:1015–1021

    Article  PubMed  Google Scholar 

  9. 9.

    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  10. 10.

    Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Skare S, Newbould RD, Clayton DB et al (2007) Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise. Magn Reson Med 57:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    McGibney G, Smith MR, Nichols ST et al (1993) Quantitative evaluation of several partial fourier reconstruction algorithms used in MRI. Magn Reson Med 30:51–59

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    O’Brien KR, Myerson SG, Cowan BR et al (2009) Phase contrast ultrashort TE: a more reliable technique for measurement of high-velocity turbulent stenotic jets. Magn Reson Med 62:626–636

    Article  PubMed  Google Scholar 

  14. 14.

    Bydder M, Robson MD (2005) Partial fourier partially parallel imaging. Magn Reson Med 53:1393–1401

    Article  PubMed  Google Scholar 

  15. 15.

    Guttman MA, Kellman P, Dick AJ et al (2003) Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med 50:315–321

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tsao J, Boesiger P, Pruessmann KP (2003) K-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042

    Article  PubMed  Google Scholar 

  17. 17.

    Pedersen H, Kozerke S, Ringgaard S et al (2009) K-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716

    Article  PubMed  Google Scholar 

  18. 18.

    Breuer FA, Kellman P, Griswold MA et al (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985

    Article  PubMed  Google Scholar 

  19. 19.

    Huang F, Akao J, Vijayakumar S et al (2005) K-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med 54:1172–1184

    Article  PubMed  Google Scholar 

  20. 20.

    Jung B, Ullmann P, Honal M et al (2008) Parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA): optimized spatiotemporal dynamic imaging. J Magn Reson Imaging 28:1226–1232

  21. 21.

    van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675

    Article  PubMed  Google Scholar 

  22. 22.

    Hennig J, Scheffler K, Laubenberger J et al (1997) Time-resolved projection angiography after bolus injection of contrast agent. Magn Reson Med 37:341–345

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Korosec FR, Frayne R, Grist TM et al (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lustig M, Donoho DL, Santos JM et al (2008) Compressed sensing MRI. IEEE Signal Process Mag 25:72–82

    Article  Google Scholar 

  25. 25.

    Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373

    Article  PubMed  Google Scholar 

  26. 26.

    Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250–W259

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Larson AC, Kellman P, Arai A et al (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53:159–168

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Heberlein K, Hu X (2006) Auto-calibrated parallel spiral imaging. Magn Reson Med 55:619–625

    Article  PubMed  Google Scholar 

  30. 30.

    Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717

    Article  PubMed  Google Scholar 

  31. 31.

    Barth M, Breuer F, Koopmans PJ et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81

    Article  PubMed  Google Scholar 

  32. 32.

    Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691

    Article  PubMed  Google Scholar 

  33. 33.

    Wang H, Adluru G, Chen L et al (2016) Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion. Magn Reson Imaging 34:1329–1336

    Article  PubMed  Google Scholar 

  34. 34.

    Krishnamurthy R, Pednekar A, Atweh LA et al (2015) Clinical validation of free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children. J Cardiovasc Magn Reson 17:1

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Han F, Rapacchi S, Khan S et al (2015) Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children. Magn Reson Med 74:1042–1049

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Dyverfeldt P, Ebbers T (2017) Comparison of respiratory motion suppression techniques for 4D flow MRI. Magn Reson Med. https://doi.org/10.1002/mrm.26574

  37. 37.

    Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643

  38. 38.

    Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788

    Article  PubMed  Google Scholar 

  39. 39.

    Piccini D, Feng L, Bonanno G et al (2017) Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 77:1473–1484

    Article  PubMed  Google Scholar 

  40. 40.

    Fratz S, Chung T, Greil GF et al (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kuhl CK, Schrading S, Strobel K et al (2014) Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection — a novel approach to breast cancer screening with MRI. J Clin Oncol 32:2304–2310

    Article  PubMed  Google Scholar 

  42. 42.

    Besa C, Lewis S, Pandharipande PV et al (2017) Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol 42:179–190

  43. 43.

    Markl M, Schnell S, Barker AJ (2014) 4D flow imaging: current status to future clinical applications. Curr Cardiol Rep 16:481

    Article  PubMed  Google Scholar 

  44. 44.

    Piccini D, Feng L, Bonanno G et al (2016) Free-breathing 3D whole-heart coronary MRA using respiratory motion-resolved sparse reconstruction. J Cardiovasc Magn Reson 18:O105

    Article  PubMed Central  Google Scholar 

  45. 45.

    Bratis K, Grigoratos C, Henningsson M et al (2016) Clinical evaluation of 3D high resolution late enhancement using image-based navigation. J Cardiovasc Magn Reson 18:P310

    Article  PubMed Central  Google Scholar 

  46. 46.

    Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: executive summary. Circulation 118:2395–2451

    Article  PubMed  Google Scholar 

  47. 47.

    Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajesh Krishnamurthy.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Hu, H.H., Krishnamurthy, R. et al. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 48, 37–49 (2018). https://doi.org/10.1007/s00247-017-3987-6

Download citation

Keywords

  • Body
  • Cardiovascular
  • Children
  • Compressed sensing
  • General anesthesia
  • Magnetic resonance imaging
  • Sedation