Skip to main content

Pediatric spine imaging post scoliosis surgery


Many orthopedic articles describe advances in surgical techniques and implants used in pediatric scoliosis surgery. However, even though postoperative spine imaging constitutes a large portion of outpatient musculoskeletal pediatric radiology, few, if any, radiology articles discuss this topic. There has been interval advancement over the last decades of the orthopedic procedures used in the treatment of spinal scoliosis in adolescents with idiopathic scoliosis. The goal of treatment in these patients is to stop the progression of the curve by blocking the spinal growth and correcting the deformity as much as possible. To that end, the authors in this paper discuss postoperative imaging findings of Harrington rods, Luque rods, Luque–Galveston implants and segmental spinal fusion systems. Regarding early onset scoliosis, the guiding principles used for adolescent idiopathic scoliosis do not apply to a growing spine because they would impede lung development. As a result, other devices have been developed to correct the curve and to allow spinal growth. These include spine-based growing rods, vertically expandable prosthetic titanium rods (requiring repetitive surgeries) and magnetically controlled growing rods (with a magnetic locking/unlocking system). Other more recent systems are Shilla and thoracoscopic anterior vertebral body tethering, which allow guided growth of the spine without repetitive interventions. In this paper, we review the radiologic appearances of different orthopedic implants and techniques used to treat adolescent idiopathic scoliosis and early onset scoliosis. Moreover, we present the imaging findings of the most frequent postoperative complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. El-Hawary R, Chukwunyerenwa C (2014) Update on evaluation and treatment of scoliosis. Pediatr Clin N Am 61:1223–1241

    Article  Google Scholar 

  2. Rajasekaran S, Kamath V, Kiran R et al (2010) Intraspinal anomalies in scoliosis: an MRI analysis of 177 consecutive scoliosis patients. Indian J Orthop 44:57

  3. Basu PS, Elsebaie H, Noordeen MHH (2002) Congenital spinal deformity: a comprehensive assessment at presentation. Spine 27:2255–2259

    Article  PubMed  Google Scholar 

  4. Hedequist D, Emans J (2007) Congenital scoliosis: a review and update. J Pediatr Orthop 27:106–116

    Article  PubMed  Google Scholar 

  5. Shen J, Wang Z, Liu J et al (2013) Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine 38:814–818

  6. Wu L, Qiu Y, Wang B et al (2010) The left thoracic curve pattern: a strong predictor for neural axis abnormalities in patients with “idiopathic” scoliosis. Spine 35:182–185

    Article  PubMed  Google Scholar 

  7. Skaggs DL, Guillaume T, El-Hawary R et al (2015) Early onset scoliosis consensus statement, SRS growing spine committee. Spine Deform 3:107

    Article  Google Scholar 

  8. Yang S, Andras LM, Redding GJ et al (2016) Early-onset scoliosis: a review of history, current treatment, and future direction. Pediatrics 137:e20150709

    Article  Google Scholar 

  9. Cassar-Pullicino VN, Eisenstein SM (2002) Imaging in scoliosis: what, why and how? Clin Radiol 57:543–562

    CAS  Article  PubMed  Google Scholar 

  10. Harrington PR (1988) The history and development of Harrington instrumentation. Clin Orthop Rel Res 227:3–5

    CAS  Google Scholar 

  11. Moen KY, Nachemson AL (1999) Treatment of scoliosis. A historical perspective. Spine 24:2570–2575

  12. McMaster MJ (1999) Luque rod instrumentation in the treatment of adolescent idiopathic scoliosis: a comparative study with Harrington instrumentation. J Bone Joint Surg Br 73:982–989

    Google Scholar 

  13. Luque ER (1982) The anatomic basis and development of segmental spinal instrumentation. Spine 7:256–259

    CAS  Article  PubMed  Google Scholar 

  14. Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop Rel Res 227:10–23

    CAS  Google Scholar 

  15. Richards BS, Herring JA, Johnston CE et al (1994) Treatment of adolescent idiopathic scoliosis using Texas Scottish Rite Hospital instrumentation. Spine 19:1598–1605

  16. Dayer R, Ouellet JA, Saran N (2012) Pelvic fixation for neuromuscular scoliosis deformity correction. Curr Rev Musculoskelet Med 5:91

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lonner BS, Kondrachov D, Siddiqi F et al (2006) Thoracoscopic spinal fusion compared with posterior spinal fusion for the treatment of adolescent idiopathic scoliosis. J Bone Joint Surg Am 88:1022–1034

    Article  PubMed  Google Scholar 

  18. Skaggs DL, Akbarina BA, Flynn JM et al (2014) A classification of growth-friendly spine implants. J Pediatr Orthop 34:260–274

    Article  PubMed  Google Scholar 

  19. Campbell RM (2013) VEPTR: past experience and the future of VEPTR principles. Eur Spine J 22:106–117

    Article  PubMed Central  Google Scholar 

  20. Parnell SE, Effmann EL, Song K et al (2015) Vertical expandable prosthetic titanium rib (VEPTR): a review of indications, normal radiographic appearance and complications. Pediatr Radiol 45:606

    Article  PubMed  Google Scholar 

  21. Yoon WW, Chang AC, Tyler P et al (2015) The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 24:1422–1426

    Article  PubMed  Google Scholar 

  22. Ouellet J (2011) Surgical technique: modern Luque trolley, a self-growing rod technique. Clin Orthop Relat Res 469:1356–1367

    Article  PubMed  PubMed Central  Google Scholar 

  23. McCarthy RE, Luhmann S, Lenke L et al (2014) The Shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop 34:1–7

    Article  PubMed  Google Scholar 

  24. Flors L, Mugler JP III, de Lange EE et al (2016) Hyperpolarized gas magnetic resonance lung imaging in children and young adults. J Thorac Imaging 31:285–295

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gollogly S, Smith JT, White SK et al (2004) The volume of lung parenchyma as a function of age: a review of 1,050 normal CT scans of the chest with three-dimensional volumetric reconstruction of the pulmonary system. Spine 29:2061–2066

  26. Altes TA, Mata J, de Lange EE et al (2006) Assessment of lung development using hyperpolarized helium-3 diffusion MR imaging. J Magn Reson Imaging 24:1277–1283

    Article  PubMed  Google Scholar 

  27. Bridwell KH (1999) Surgical treatment of idiopathic adolescent scoliosis. Spine 24:2607–2616

    CAS  Article  PubMed  Google Scholar 

  28. Gemmel F, Dumarey N, Palestro CJ (2006) Radionuclide imaging of spinal infections. Eur J Nucl Med Mol Imaging 33:1226–1237

    Article  PubMed  Google Scholar 

  29. Wieser ES, Skripkus UJ, Wang JC (2004, September) The role of nuclear medicine imaging in the diagnosis and management of postoperative spinal infections in the setting of instrumentation. In: Wiesel SW, Boden SD (eds) Seminars in spine surgery, vol. 16, W.B. Saunders, Philadelphia, pp 156–161

  30. Murphy RF, Mooney JF 3rd (2016) Complications following spine fusion for adolescent idiopathic scoliosis. Curr Rev Musculoskelet Med 9:462–469

    Article  PubMed  PubMed Central  Google Scholar 

  31. Glattes RC, Bridwell KH, Lenke LG et al (2005) Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine 30:1643–1649

    Article  PubMed  Google Scholar 

  32. Hart RA, McCarthy I, Ames CP et al (2013) Proximal junctional kyphosis and proximal junctional failure. Neurosurg Clin North Am 24:213–218

    Article  Google Scholar 

  33. Nectoux E, Giacomelli MC, Karger C et al (2010) Complication of the Luque-Galveston scoliosis correction technique in pediatric cerebral palsy. Orthop-Traumatol Surg Res 96:354–361

    CAS  Article  PubMed  Google Scholar 

  34. Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803

    Article  PubMed  Google Scholar 

  35. Stradiotti P, Curti A, Castellazzi G et al (2009) Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 18:102–108

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We acknowledge Dr. J. Ouellet for allowing us to use one of his figures from the article “Surgical Technique: Modern Luque Trolley, a Self-growing Rod Technique” [22].

This paper was previously presented as an educational exhibit at the IPR 7th Conjoint Meeting and Exhibition, May 15–20, 2016, in Chicago, IL.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alaa N. Alsharief.

Ethics declarations

Conflicts of interest

Dr. A.N. Alsharief and Dr. P. Schmit have no conflicts of interest to disclose. Dr. R. El-Hawary discloses research, education and consulting with DePuy Synthes Spine and Medtronic Spine.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alsharief, A.N., El-Hawary, R. & Schmit, P. Pediatric spine imaging post scoliosis surgery. Pediatr Radiol 48, 124–140 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Adolescents
  • Children
  • Computed tomography
  • Implants
  • Radiography
  • Scoliosis
  • Spine