Skip to main content

Pediatric anesthesia and neurotoxicity: what the radiologist needs to know

Abstract

The use of cross-sectional imaging in the pediatric population continues to rise, particularly the use of MRI. Limiting motion artifact requires cooperative subjects who do not move during imaging, so there has been an increase in the need for pediatric sedation or anesthesia. Over the last decade, concern has increased that exposure to anesthesia might be associated with long-term cognitive deficits. In this review we report current understanding of the effects of anesthesia on the pediatric population, with special focus on long-term developmental and cognitive outcomes, and suggest how radiologists can use new technologies or imaging strategies to mitigate or minimize these potential risks.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gessner KE, Tomlinson C, Jaramillo D et al (2008) Is awareness about CT and radiation exposure effecting imaging utilization at large children’s hospitals? http://archive.rsna.org/2008/6021223.html. Accessed 01 September 2016

  2. 2.

    Huang Y, Li L, Monteleone M et al (2016) Use of anesthesia for imaging studies and interventional procedures in children. J Neurosurg Anesthesiol 28:400–404

    Article  Google Scholar 

  3. 3.

    Wachtel RE, Dexter F, Dow AJ (2009) Growth rates in pediatric diagnostic imaging and sedation. Anesth Analg 108:1616–1621

    Article  PubMed  Google Scholar 

  4. 4.

    Cravero JP, Blike GT, Beach M et al (2006) Incidence and nature of adverse events during pediatric sedation/anesthesia for procedures outside the operating room: report from the pediatric sedation research consortium. Pediatrics 118:1087–1096

    Article  PubMed  Google Scholar 

  5. 5.

    Mellon RD, Simone AF, Rappaport BA (2007) Use of anesthetic agents in neonates and young children. Anesth Analg 104:509–520

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Davidson AJ (2011) Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Paediatr Anaesth 21:716–721

    Article  PubMed  Google Scholar 

  7. 7.

    Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:S514–S516

    Article  Google Scholar 

  8. 8.

    Ruess L, O’Connor SC, Mikita CP et al (2002) Sedation for pediatric diagnostic imaging: use of pediatric and nursing resources as an alternative to a radiology department sedation team. Pediatr Radiol 32:505–510

    Article  PubMed  Google Scholar 

  9. 9.

    Macias CG, Chumpitazi CE (2011) Sedation and anesthesia for CT: emerging issues for providing high-quality care. Pediatr Radiol 41:S517–S522

    Article  Google Scholar 

  10. 10.

    Arlachov Y, Ganatra RH (2012) Sedation/anesthesia in pediatric radiology. Br J Radiol 85:e1018–e1031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Starkey E, Sammons HM (2011) Sedation for radiological imaging. Arch Dis Child Educ Pract Ed 96:101–106

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Malviya S, Voepel-Lewis T, Tait AR et al (2004) Pentobarbital vs chloral hydrate for sedation of children undergoing MRI: efficacy and recovery characteristics. Paediatr Anaesth 14:589–595

    Article  PubMed  Google Scholar 

  13. 13.

    Siddappa R, Riggins J, Kariyanna S et al (2010) High-dose dexmedetomidine sedation for pediatric MRI. Paediatr Anaesth 21:153–158

    Article  Google Scholar 

  14. 14.

    Mallory MD, Baxter AL, Kost SI et al (2009) Propofol vs pentobarbital for sedation of children undergoing magnetic resonance imaging: results from the pediatric sedation research consortium. Paediatr Anaesth 19:601–611

    Article  PubMed  Google Scholar 

  15. 15.

    Baxter AL, Mallory MD, Spandorfer PR et al (2007) Etomidate versus pentobarbital for computed tomography sedations. Pediatr Emerg Care 23:690–695

    Article  PubMed  Google Scholar 

  16. 16.

    Cutler KO, Bush AJ, Godambe SA et al (2007) The use of a pediatric emergency medicine-staffed sedation service during imaging: a retrospective analysis. Am J Emerg Med 25:654–661

    Article  PubMed  Google Scholar 

  17. 17.

    Malviya S, Voepel-Lewis T, Eldevik OP et al (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Newman DH, Azer MM, Pitetti RD et al (2003) When is a patient safe for discharge after procedural sedation? The timing of adverse effect events in 1,367 pediatric procedural sedations. Ann Emerg Med 42:627–635

    Article  PubMed  Google Scholar 

  19. 19.

    Kannikeswaran N, Mahajan PV, Sethuraman U et al (2009) Sedation medication received and adverse events related to sedation for brain MRI in children with and without developmental disabilities. Paediatr Anaesth 19:250–256

    Article  PubMed  Google Scholar 

  20. 20.

    Sanborn PA, Michna E, Zurakowski D et al (2005) Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology 237:288–294

    Article  PubMed  Google Scholar 

  21. 21.

    Coté CJ, Karl HW, Notterman DA et al (2000) Adverse sedation events in pediatrics: analysis of medications used for sedation. Pediatrics 106:633–644

    Article  PubMed  Google Scholar 

  22. 22.

    Loepke AW, Soriano SG (2008) An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 106:1681–1707

    Article  PubMed  Google Scholar 

  23. 23.

    Sanders RD, Hassell J, Davidson AJ et al (2013) Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth 110:i53–i72

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Satomoto M, Satoh Y, Terui K et al (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110:628–637

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Brambrink AM, Evers AS, Avidan MS et al (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112:834–841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stratmann G, Lee J, Sall JW et al (2014) Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology 39:2275–2287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Takaenoki Y, Satoh Y, Araki Y et al (2014) Neonatal exposure to sevoflurane in mice causes deficits in maternal behavior later in adulthood. Anesthesiology 120:403–415

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Jevtovic-Todorovic V, Hartman RE, Izumi Y et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    CAS  PubMed  Google Scholar 

  30. 30.

    Hansen T (2015) Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth 25:65–72

    Article  PubMed  Google Scholar 

  31. 31.

    Anand KJS (2007) Anesthetic neurotoxicity in newborns: should we change clinical practice? Anesthesiology 107:2–4

    Article  PubMed  Google Scholar 

  32. 32.

    Pound P, Bracken MB (2014) Is animal research sufficiently evidence based to be a cornerstone of biomedical research? BMJ 348:g3387

    Article  PubMed  Google Scholar 

  33. 33.

    Hays SR, Deshpande JK (2013) Newly postulated neurodevelopmental risks of pediatric anesthesia: theories that could rock our world. J Urol 189:1222–1228

    Article  PubMed  Google Scholar 

  34. 34.

    Vutskits L, Xie Z (2016) Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 17:705–717

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hansen TG, Flick R (2009) Anesthetic effects on the developing brain: insights from epidemiology. Anesthesiology 110:1–3

    Article  PubMed  Google Scholar 

  36. 36.

    Hansen TG (2013) Neurotoxicity, general anesthesia and the developing brain: what have we learned from the human studies so far? Curr Anesthesiol Rep 3:175–183

    Article  Google Scholar 

  37. 37.

    DiMaggio C, Sun LS, Kakavouli A et al (2009) A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol 21:286–291

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    DiMaggio C, Sun LS, Li G (2011) Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 113:1143–1151

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Walker K, Halliday R, Holland AJA et al (2010) Early developmental outcome of infants with infantile hypertrophic pyloric stenosis. J Pediatr Surg 45:2369–2372

    Article  PubMed  Google Scholar 

  40. 40.

    Hansen TG, Pedersen JK, Henneberg SW et al (2013) Educational outcome in adolescence following pyloric stenosis repair before 3 months of age: a nationwide cohort study. Paediatr Anaesth 23:883–890

    Article  PubMed  Google Scholar 

  41. 41.

    Bong CL, Allen JC, Kim JTS (2013) The effects of exposure to general anesthesia in infancy on academic performance at age 12. Anesth Analg 117:1419–1428

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Bartels M, Althoff RR, Boomsma DI (2009) Anesthesia and cognitive performance in children: no evidence for a causal relationship. Twin Res Hum Genet 12:246–253

    Article  PubMed  Google Scholar 

  43. 43.

    Hansen TG, Pedersen JK, Henneberg SW et al (2011) Academic performance in adolescence after inguinal hernia repair in infancy. Anesthesiology 114:1076–1085

    Article  PubMed  Google Scholar 

  44. 44.

    Kalkman CJ, Peelen L, Moons KG et al (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110:805–812

    Article  PubMed  Google Scholar 

  45. 45.

    Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ing C, DiMaggio C, Whitehouse A et al (2012) Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130:e476–e485

    Article  PubMed  Google Scholar 

  48. 48.

    Taghon TA, Masunga AN, Small RH et al (2015) A comparison of functional magnetic resonance imaging findings in children with and without a history of early exposure to general anesthesia. Paediatr Anaesth 25:239–246

    Article  PubMed  Google Scholar 

  49. 49.

    Backeljauw B, Holland SK, Altaye M et al (2015) Cognition and brain structure following early childhood surgery with anesthesia. Pediatrics 136:e1–12

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Block RI, Thomas JJ, Bayman EO et al (2012) Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology 117:494–503

    Article  PubMed  Google Scholar 

  51. 51.

    Williams RK, Black IH, Howard DB et al (2014) Cognitive outcome after spinal anesthesia and surgery during infancy. Anesth Analg 119:651–660

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Nemergut ME, Crow S, Flick RP (2014) Cognitive outcomes after infant spinal anesthesia: the other side of the coin. Anesth Analg 119:514–515

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  54. 54.

    Chinn GA, Sasaki Russel JM, Sall JW (2016) Is a short anesthetic exposure in children safe? Time will tell: a focused commentary of the GAS and PANDA trials. Ann Transl Med 4:408–413

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jevtovic-Todorovic V, Absalom AR, Blomgren K et al (2013) Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg seminar. Br J Anaesth 111:143–151

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Flick RP, Warner DO (2012) A users’ guide to interpreting observational studies of pediatric anesthetic neurotoxicity. Anesthesiology 117:459–462

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    SmartTots (2012) Consensus statement on the use of anesthetics and sedatives in children. http://www.asdahq.org/sites/default/files/Smart%20Tots%20Consensus%20Statement%202012.pdf. Accessed 28 Mar 2017

  58. 58.

    SmartTots (2015) Consensus statement on the use of anesthetic and sedative drugs in infants and toddlers. http://smarttots.org/about/consensus-statement/. Accessed 28 Mar 2017

  59. 59.

    Rosenberg DR, Sweeney JA, Gillen JS et al (1997) Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 36:853–859

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Sury MRJ, Harker H, Begent J et al (2005) The management of infants and children for painless imaging. Clin Radiol 60:731–741

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    de Bie HMA, Boersma M, Wattjes MP et al (2010) Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur J Pediatr 169:1079–1085

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Hallowell LM, Stewart SE, de Amorem e Silva CT et al (2008) Reviewing the process of preparing children for MRI. Pediatr Radiol 38:271–279

    Article  PubMed  Google Scholar 

  63. 63.

    Gale C, Jeffries S, Logan KM et al (2013) Avoiding sedation in research MRI and spectroscopy in infants: our approach, success rate and prevalence of incidental findings. Arch Dis Child Fetal Neonatal Ed 98:F267–F268

    Article  PubMed  Google Scholar 

  64. 64.

    Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364

    Article  PubMed  Google Scholar 

  65. 65.

    Khan JJ, Donnelly LF, Koch BL et al (2007) A program to decrease the need for pediatric sedation for CT and MRI. Appl Radiol 36:30–33

    Google Scholar 

  66. 66.

    Sanders RD, Xu J, Shu Y et al (2009) Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology 110:1077–1085

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Mason KP, Zurakowski D, Zgleszewski SE et al (2008) High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth 18:403–411

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua P. Nickerson.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barton, K., Nickerson, J.P., Higgins, T. et al. Pediatric anesthesia and neurotoxicity: what the radiologist needs to know. Pediatr Radiol 48, 31–36 (2018). https://doi.org/10.1007/s00247-017-3871-4

Download citation

Keywords

  • Anesthesia
  • Children
  • Developmental delay
  • Magnetic resonance imaging
  • Neurotoxicity
  • Sedation