Pediatric Radiology

, Volume 45, Issue 10, pp 1544–1553 | Cite as

Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

  • Touko KaasalainenEmail author
  • Kirsi Palmu
  • Anniina Lampinen
  • Vappu Reijonen
  • Junnu Leikola
  • Riku Kivisaari
  • Mika Kortesniemi
Original Article



Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis.


To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging.

Materials and methods

We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues.


Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level.


Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.


ALARA Computed tomography optimization Craniosynostosis Iterative reconstruction Child Radiation protection 



This study was supported by the State Subsidy for University Hospitals in Finland.

Conflicts of interest


Supplementary material

247_2015_3348_MOESM1_ESM.doc (70 kb)
Table i Mean subjective image quality rates of low-dose CT protocols using different reconstructions according to a 5-point Likert scale (DOC 70 kb)
247_2015_3348_Fig4_ESM.gif (26 kb)
Fig. i

Organ doses measured with MOSFET dosimeters at 100 kVp for the newborn (a) and (b) 5-year phantoms. Saturation of the tube current to a fixed minimum of 10 mA causes the regression curve model and the measurement results to diverge. MOSFET metal-oxide-semiconductor field-effect transistor (GIF 25 kb)

247_2015_3348_Fig5_ESM.gif (38 kb)
Fig. i

Organ doses measured with MOSFET dosimeters at 100 kVp for the newborn (a) and (b) 5-year phantoms. Saturation of the tube current to a fixed minimum of 10 mA causes the regression curve model and the measurement results to diverge. MOSFET metal-oxide-semiconductor field-effect transistor (GIF 25 kb)

247_2015_3348_MOESM2_ESM.eps (184 kb)
High resolution image (EPS 183 kb)
247_2015_3348_MOESM3_ESM.eps (124 kb)
High resolution image (EPS 124 kb)


  1. 1.
    Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284Google Scholar
  2. 2.
    Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol 188:540–546CrossRefPubMedGoogle Scholar
  4. 4.
    Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166CrossRefPubMedGoogle Scholar
  5. 5.
    Binaghi S, Gudinchet F, Rilliet B (2000) Three-dimensional spiral CT of craniofacial malformations in children. Pediatr Radiol 30:856–860CrossRefPubMedGoogle Scholar
  6. 6.
    Furuya Y, Edwards MSB, Alpers CE et al (1984) Computerized tomography of cranial sutures. Part 1: comparison of suture anatomy in children and adults. J Neurosurg 61:53–58CrossRefPubMedGoogle Scholar
  7. 7.
    Boyle CM, Rosenblum JD (1997) Three-dimensional CT for pre- and postsurgical imaging of patients with craniosynostosis: correlation of operative procedure and radiological imaging. AJR Am J Roentgenol 169:1173–1177CrossRefPubMedGoogle Scholar
  8. 8.
    Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111:2032–2048CrossRefPubMedGoogle Scholar
  9. 9.
    Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79CrossRefPubMedGoogle Scholar
  10. 10.
    Deak PD, Langner O, Lell M et al (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147CrossRefPubMedGoogle Scholar
  11. 11.
    Wang J, Duan X, Christner JA et al (2011) Radiation dose reduction to the breast in thoracic CT: comparison of bismuth shielding, organ-based tube current modulation, and use of a globally decreased tube current. Med Phys 38:6084–6092CrossRefPubMedGoogle Scholar
  12. 12.
    Vazquez JL, Pombar MA, Pumar JM et al (2013) Optimised low-dose multidetector CT protocol for children with cranial deformity. Eur Radiol 23:2279–2287CrossRefPubMedGoogle Scholar
  13. 13.
    Dougeni E, Faulkner K, Panayiotakis G (2012) A review of patient dose and optimization methods in adult and paediatric CT scanning. Eur J Radiol 81:e665–e683CrossRefPubMedGoogle Scholar
  14. 14.
    Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med 28:94–108CrossRefPubMedGoogle Scholar
  15. 15.
    Thibault JB, Sauer KD, Bouman CA et al (2007) A three-dimensional statistical approach to improve image quality for multislice helical CT. Med Phys 34:4526–4544CrossRefPubMedGoogle Scholar
  16. 16.
    (2007) The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37: 1–332Google Scholar
  17. 17.
    Drexler G, Panzer W, Petoussi N et al (1993) Effective dose — how effective for patients? Radiat Environ Biophys 32:209–219Google Scholar
  18. 18.
    Kaasalainen T, Palmu K, Lampinen A et al (2013) Effect of vertical positioning on organ dose, image noise and contrast in pediatric chest CT — phantom study. Pediatr Radiol 43:673–678Google Scholar
  19. 19.
    Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55Google Scholar
  20. 20.
    Pilgram TK, Vannier MW, Hildebolt CF et al (1989) Craniosynostosis: image quality, confidence, and correctness in diagnosis. Radiology 173:675–679CrossRefPubMedGoogle Scholar
  21. 21.
    Cerovac S, Neil-Dwyer JG, Rich P et al (2002) Are routine preoperative CT scans necessary in the management of single suture craniosynostosis? Br J Neurosurg 16:348–354CrossRefPubMedGoogle Scholar
  22. 22.
    Jaffurs D, Denny A (2009) Diagnostic pediatric computed tomographic scans of the head: actual dosage versus estimated risk. Plast Reconstr Surg 124:1254–1260CrossRefPubMedGoogle Scholar
  23. 23.
    Didier RA, Kuang AA, Schwartz DL et al (2010) Decreasing the effective radiation dose in pediatric craniofacial CT by changing head position. Pediatr Radiol 40:1910–1917CrossRefPubMedGoogle Scholar
  24. 24.
    Calandrelli R, A’Apolito G, Gaudino S et al (2014) Identification of skull base sutures and craniofacial anomalies in children with craniosynostosis: utility of multidetector CT. Radiol Med 119:694–704CrossRefPubMedGoogle Scholar
  25. 25.
    Pickhardt PJ, Lubner MG, Kim DH et al (2012) Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol 199:1266–1274PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613–1623CrossRefPubMedGoogle Scholar
  27. 27.
    Miéville FA, Berteloot L, Grandjean A et al (2013) Model-based iterative reconstruction in pediatric chest CT: assessment of image quality in a prospective study of children with cystic fibrosis. Pediatr Radiol 43:558–567CrossRefPubMedGoogle Scholar
  28. 28.
    Deák Z, Grimm JM, Treitl M (2013) Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiology 266:197–206CrossRefPubMedGoogle Scholar
  29. 29.
    Smith EA, Dillman JR, Goodsitt MM et al (2014) Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 270:526–534PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Touko Kaasalainen
    • 1
    • 2
    Email author
  • Kirsi Palmu
    • 1
    • 3
  • Anniina Lampinen
    • 1
    • 2
  • Vappu Reijonen
    • 1
  • Junnu Leikola
    • 4
  • Riku Kivisaari
    • 5
  • Mika Kortesniemi
    • 1
  1. 1.HUS Medical Imaging Center, RadiologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Biomedical Engineering and Computational ScienceSchool of Science, Aalto UniversityHelsinkiFinland
  4. 4.Department of Plastic SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
  5. 5.Department of NeurosurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations