Skip to main content

Advertisement

Log in

Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Children with glucocorticoid-treated illnesses are at risk for osteoporotic vertebral fractures, and growing awareness of this has led to increased monitoring for these fractures. However scant literature describes developmental changes in vertebral morphology that can mimic fractures. The goal of this paper is to aid in distinguishing between normal variants and fractures. We illustrate differences using lateral spine radiographs obtained annually from children recruited to the Canada-wide STeroid-Associated Osteoporosis in the Pediatric Population (STOPP) observational study, in which 400 children with glucocorticoid-treated leukemia, rheumatic disorders, and nephrotic syndrome were enrolled near glucocorticoid initiation and followed prospectively for 6 years. Normal variants mimicking fractures exist in all regions of the spine and fall into two groups. The first group comprises variants mimicking pathological vertebral height loss, including not-yet-ossified vertebral apophyses superiorly and inferiorly, which can lead to a vertebral shape easily over-interpreted as anterior wedge fracture, physiological beaking, or spondylolisthesis associated with shortened posterior vertebral height. The second group includes variants mimicking other radiologic signs of fractures: anterior vertebral artery groove resembling an anterior buckle fracture, Cupid’s bow balloon disk morphology, Schmorl nodes mimicking concave endplate fractures, and parallax artifact resembling endplate interruption or biconcavity. If an unexpected vertebral body contour is detected, careful attention to its location, detailed morphology, and (if available) serial changes over time may clarify whether it is a fracture requiring change in management or simply a normal variant. Awareness of the variants described in this paper can improve accuracy in the diagnosis of pediatric vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Leroux J, Vivier PH, Ould Slimane M et al (2013) Early diagnosis of thoracolumbar spine fractures in children. A prospective study. Orthop Traumatol Surg Res 99:60–65

    Article  CAS  PubMed  Google Scholar 

  2. Halton J, Gaboury I, Grant R et al (2009) Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res 24:1326–1334

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alos N, Grant RM, Ramsay T et al (2012) High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol 30:2760–2767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Huber AM, Gaboury I, Cabral DA et al (2010) Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken) 62:516–526

    Article  CAS  Google Scholar 

  5. Rodd C, Lang B, Ramsay T et al (2012) Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res (Hoboken) 64:122–131

    Article  Google Scholar 

  6. Feber J, Gaboury I, Ni A et al (2012) Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int 23:751–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Phan V, Blydt-Hansen T, Feber J et al (2014) Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int 25:627–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Siminoski K, Lee KC, Jen H et al (2012) Anatomical distribution of vertebral fractures: comparison of pediatric and adult spines. Osteoporos Int 23:1999–2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Moore KL, Persaud TVN (1993) The skeletal system. The developing human: clinically oriented embryology. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  10. Resnick D, Niwayama G (1978) Intravertebral disk herniations: cartilaginous (Schmorl’s) nodes. Radiology 126:57–65

    Article  CAS  PubMed  Google Scholar 

  11. Bagnall KM, Harris PF, Jones PR (1977) A radiographic study of the human fetal spine. 2. The sequence of development of ossification centres in the vertebral column. J Anat 124:791–802

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Bick EM, Copel JW (1950) Longitudinal growth of the human vertebra; a contribution to human osteogeny. J Bone Joint Surg Am 32:803–814

    PubMed  Google Scholar 

  13. Yu SW, Sether LA, Ho PS et al (1988) Tears of the anulus fibrosus: correlation between MR and pathologic findings in cadavers. AJNR Am J Neuroradiol 9:367–370

    CAS  PubMed  Google Scholar 

  14. Jones MD, Pais MJ, Omiya B (1988) Bony overgrowths and abnormal calcifications about the spine. Radiol Clin North Am 26:1213–1234

    CAS  PubMed  Google Scholar 

  15. Cil A, Yazici M, Uzumcugil A et al (2005) The evolution of sagittal segmental alignment of the spine during childhood. Spine 30:93–100

    PubMed  Google Scholar 

  16. Clowes JA, Eastell R (2008) Vertebral fracture assessment. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research, Washington DC, pp 186–193

    Chapter  Google Scholar 

  17. Lentle BC, Brown JP, Khan A et al (2007) Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 58:27–36

    PubMed  Google Scholar 

  18. Pandya NA, Meller ST, MacVicar D et al (2001) Vertebral compression fractures in acute lymphoblastic leukaemia and remodelling after treatment. Arch Dis Child 85:492–493

  19. Bjerregaard LL, Rosthooj S (2002) Vertebral compression and eosinophilia in a child with acute lymphatic leukemia. J Pediatr Hematol Oncol 24:313–315

    Article  PubMed  Google Scholar 

  20. Oliveri MB, Mautalen CA, Rodriguez Fuchs CA et al (1991) Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J 39:45–48

    CAS  PubMed  Google Scholar 

  21. Carberry GA, Pooler BD, Binkley N et al (2013) Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology 268:120–126

    Article  PubMed  Google Scholar 

  22. Jiang G, Eastell R, Barrington NA et al (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896

    Article  CAS  PubMed  Google Scholar 

  23. Genant HK, Wu CY, van Kuijk C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  24. Siminoski K, Lentle B, Matzinger MA et al (2014) Observer agreement in pediatric semiquantitative vertebral fracture diagnosis. Pediatr Radiol 44:457–466

    Article  PubMed  Google Scholar 

  25. Giglio CA, Volpon JB (2007) Development and evaluation of thoracic kyphosis and lumbar lordosis during growth. J Child Orthop 1:187–193

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gaca AM, Barnhart HX, Bisset GS 3rd (2010) Evaluation of wedging of lower thoracic and upper lumbar vertebral bodies in the pediatric population. AJR Am J Roentgenol 194:516–520

    Article  PubMed  Google Scholar 

  27. Ferrar L, Jiang G, Armbrecht G et al (2007) Is short vertebral height always an osteoporotic fracture? The Osteoporosis and Ultrasound Study (OPUS). Bone 41:5–12

    Article  CAS  PubMed  Google Scholar 

  28. Swischuk LE (1970) The beaked, notched, or hooked vertebra: its significance in infants and young children. Radiology 95:661–664

    Article  CAS  PubMed  Google Scholar 

  29. Levin TL, Berdon WE, Lachman RS et al (1997) Lumbar gibbus in storage diseases and bone dysplasias. Pediatr Radiol 27:289–294

    Article  CAS  PubMed  Google Scholar 

  30. Dietz GW, Christensen EE (1976) Normal ‘Cupid’s bow’ contour of the lower lumbar vertebrae. Radiology 121:577–579

    Article  CAS  PubMed  Google Scholar 

  31. Tsuji H, Yoshioka T, Sainoh H (1985) Developmental balloon disc of the lumbar spine in healthy subjects. Spine 10:907–911

    Article  CAS  PubMed  Google Scholar 

  32. Chan KK, Sartoris DJ, Haghighi P et al (1997) Cupid’s bow contour of the vertebral body: evaluation of pathogenesis with bone densitometry and imaging-histopathologic correlation. Radiology 202:253–256

    Article  CAS  PubMed  Google Scholar 

  33. Kyere KA, Than KD, Wang AC et al (2012) Schmorl’s nodes. Eur Spine J 21:2115–2121

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tsirikos AI, Jain AK (2011) Scheuermann’s kyphosis: current controversies. J Bone Joint Surg (Br) 93:857–864

    Article  CAS  Google Scholar 

  35. Lowe TG, Line BG (2007) Evidence based medicine: analysis of Scheuermann kyphosis. Spine 32:S115–S119

    Article  PubMed  Google Scholar 

  36. McNaught JM (2006) A clinical and archaeological study of Schmorl’s nodes: using clinical data to understand the past. Doctoral thesis, Department of Archaeology. Durham University, Durham, NC

  37. Madani G, Papadopoulou AM, Holloway B et al (2007) The radiological manifestations of sickle cell disease. Clin Radiol 62:528–538

    Article  CAS  PubMed  Google Scholar 

  38. Chapelon E, Garabedian M, Brousse V et al (2009) Osteopenia and vitamin D deficiency in children with sickle cell disease. Eur J Haematol 83:572–578

    Article  CAS  PubMed  Google Scholar 

  39. Hensinger RN (1983) Spondylolysis and spondylolisthesis in children. Instr Course Lect 32:132–151

    CAS  PubMed  Google Scholar 

  40. Murase M (1989) Clinical and radiological surveys of lumbar spondylolysis in young soccer players. Nihon Seikeigeka Gakkai Zasshi 63:1297–1305

    CAS  PubMed  Google Scholar 

  41. Huang RP, Bohlman HH, Thompson GH et al (2003) Predictive value of pelvic incidence in progression of spondylolisthesis. Spine 28:2381–2385

    Article  PubMed  Google Scholar 

  42. Kumar R, Guinto FC Jr, Madewell JE et al (1988) The vertebral body: radiographic configurations in various congenital and acquired disorders. Radiographics 8:455–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was primarily funded by an operating grant from the Canadian Institutes for Health Research (FRN 64285). Additional funding for this work has been provided to Dr. Leanne Ward by the Canadian Institutes for Health Research New Investigator Program, the Canadian Child Health Clinician Scientist Career Enhancement Program, a University of Ottawa Research Chair Award and the CHEO Departments of Pediatrics and Surgery. This work was also supported by the Children’s Hospital of Eastern Ontario Research Institute and the University of Alberta Women and Children’s Health Research Institute.

The Canadian STOPP Consortium would like to thank the following individuals:

The children and their families who participated in the study and without whom the STOPP study would not have been possible;

Research associates who managed the study at the co-ordinating center (the Children’s Hospital of Eastern Ontario, Ottawa, Ontario): Elizabeth Sykes (STOPP Project Manager), Maya Scharke (STOPP Data Analyst and Database Manager), Monica Tomiak (Statistical Analyses), Victor Konji (STOPP Publications and Presentations Committee Liaison), Steve Anderson (Children’s Hospital of Eastern Ontario Pediatric Bone Health Program Research Manager), Catherine Riddell (STOPP National Study Monitor);

Research associates who took care of the patients from the following institutions: Alberta Children’s Hospital, Calgary, Alberta: Eileen Pyra; British Columbia Children’s Hospital, Vancouver, British Columbia: Terry Viczko, Sandy Hwang, Angelyne Sarmiento; Children’s Hospital of Eastern Ontario, Ottawa, Ontario: Heather Cosgrove, Josie MacLennan, Catherine Riddell; Children’s Hospital, London Health Sciences Centre, London, Ontario: Vinolia ArthurHayward, Leila MacBean, Mala Ramu; McMaster Children’s Hospital, Hamilton, Ontario: Susan Docherty-Skippen; IWK Health Center, Halifax, Nova Scotia: Cindy Campbell, Aleasha Warner; Montréal Children’s Hospital, Montréal, Québec: Valérie Gagné, Diane Laforte, Maritza Laprise, Ste. Justine Hospital, Montréal, Québec: Claude Belleville, Natacha Gaulin Marion; Stollery Children’s Hospital, Edmonton, Alberta: Ronda Blasco, Germaine McInnes, Amanda Mullins; Toronto Hospital for Sick Children, Toronto, Ontario: Alexandra Airhart, Michele Petrovic, Nicole Sarvaria; Winnipeg Children’s Hospital, Winnipeg, Manitoba: Dan Catte, Erika Bloomfield, Jeannine Schellenberg; as well as the research nurses, support staff and all the STOPP collaborators from the various divisions of Nephrology, Oncology, Rheumatology and Radiology who have contributed to the care of the children enrolled in the study.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jacob L. Jaremko.

Additional information

CME activity

This article has been selected as the CME activity for the current month. Please visit the SPR Web site at www.pedrad.org on the Education page and follow the instructions to complete this CME activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaremko, J.L., Siminoski, K., Firth, G.B. et al. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study. Pediatr Radiol 45, 593–605 (2015). https://doi.org/10.1007/s00247-014-3210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-014-3210-y

Keywords

Navigation