Skip to main content
Log in

Body growth and brain development in premature babies: an MRI study

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities.

Objective

To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age.

Materials and methods

Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGAa) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGAb). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored.

Results

Lower rBV was observed in SGAb in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05).

Conclusion

In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dusick AM, Poindexter BB, Ehrenkranz RA et al (2003) Growth failure in the preterm infant: can we catch up? Semin Perinatol 27:302–310

    Article  PubMed  Google Scholar 

  2. Franz AR, Pohlandt F, Bode H et al (2009) Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics 123:e101–e109

    Article  PubMed  Google Scholar 

  3. Hack M, Breslau N (1986) Very low birth weight infants: effects of brain growth during infancy on intelligence quotient at 3 years of age. Pediatrics 77:196–202

    CAS  PubMed  Google Scholar 

  4. Latal-Hajnal B, von Siebenthal K, Kovari H et al (2003) Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr 143:163–170

    Article  PubMed  Google Scholar 

  5. Saenger P, Czernichow P, Hughes I et al (2007) Small for gestational age: short stature and beyond. Endocr Rev 28:219–251

    Article  CAS  PubMed  Google Scholar 

  6. Casey PH, Kraemer HC, Bernbaum J et al (1991) Growth status and growth rates of a varied sample of low birth weight, preterm infants: a longitudinal cohort from birth to three years of age. J Pediatr 119:599–605

    Article  CAS  PubMed  Google Scholar 

  7. Lodygensky GA, Seghier ML, Warfield SK et al (2008) Intrauterine growth restriction affects the preterm infant’s hippocampus. Pediatr Res 63:438–443

    Article  PubMed  Google Scholar 

  8. Rose J, Butler EE, Lamont LE et al (2009) Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. Dev Med Child Neurol 51:526–535

    Article  PubMed  Google Scholar 

  9. Tolsa CB, Zimine S, Warfield SK et al (2004) Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 56:132–138

    Article  PubMed  Google Scholar 

  10. Xydis V, Drougia A, Giapros V et al (2013) Brain growth in preterm infants is affected by the degree of growth restriction at birth. J Matern Fetal Neonatal Med 26:673–679

    Article  PubMed  Google Scholar 

  11. Volpe JJ (2000) Overview: normal and abnormal human brain development. Ment Retard Dev Disabil Res Rev 6:1–5

    Article  CAS  PubMed  Google Scholar 

  12. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cooke RW (2006) Are there critical periods for brain growth in children born preterm? Arch Dis Child Fetal Neonatal Ed 91:F17–F20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Inder TE, Warfield SK, Wang H et al (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294

    Article  PubMed  Google Scholar 

  15. Thompson DK, Warfield SK, Carlin JB et al (2007) Perinatal risk factors altering regional brain structure in the preterm infant. Brain 130:667–677

    Article  PubMed  Google Scholar 

  16. Arzoumanian Y, Mirmiran M, Barnes PD et al (2003) Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants. AJNR Am J Neuroradial 24:1646–1653

    CAS  Google Scholar 

  17. Alexander GR, Kogan MD, Himes JH (1999) 1994–1996 U.S. singleton birth weight percentiles for gestational age by race, Hispanic origin, and gender. Matern Child Health J 3:225–231

    Article  CAS  PubMed  Google Scholar 

  18. Shi F, Yap PT, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. PloS One 6:e18746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sauer PJ (2007) Can extrauterine growth approximate intrauterine growth? Should it? Am J Clin Nutr 85:608S–613S

    CAS  PubMed  Google Scholar 

  20. Giapros VI, Schiza V, Challa AS et al (2012) Serum insulin-like growth factor I (IGF-I), IGF-binding proteins-1 and -3, and postnatal growth of late preterm infants. Horm Metab Res 44:845–850

    Article  CAS  PubMed  Google Scholar 

  21. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    PubMed  Google Scholar 

  22. Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31:120–125

    Article  CAS  PubMed  Google Scholar 

  23. Carson MJ, Behringer RR, Brinster RL et al (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10:729–740

    Article  CAS  PubMed  Google Scholar 

  24. Hansen-Pupp I, Hovel H, Hellstrom A et al (2011) Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants. J Clin Endrocrinol Metab 96:1129–1135

    Article  CAS  Google Scholar 

  25. McMorris FA, Mozell RL, Carson MJ et al (1993) Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors. Ann N Y Acad Sci 692:321–334

    Article  CAS  PubMed  Google Scholar 

  26. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132

    Article  CAS  PubMed  Google Scholar 

  27. Hasegawa T, Yamada K, Morimoto M et al (2011) Development of corpus callosum in preterm infants is affected by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr Res 69:249–254

    Article  PubMed  Google Scholar 

  28. Cheong JL, Hunt RW, Anderson PJ et al (2008) Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics 121:e1534–e1540

    Article  PubMed  Google Scholar 

  29. Cooke RW, Lucas A, Yudkin PL et al (1977) Head circumference as an index of brain weight in the fetus and newborn. Early Hum Dev 1:145–149

    Article  CAS  PubMed  Google Scholar 

  30. Gale CR, O’Callaghan FJ, Bredow M et al (2006) The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics 118:1486–1492

    Article  PubMed  Google Scholar 

  31. Sakuma H, Nomura Y, Takeda K et al (1991) Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180:229–233

    CAS  PubMed  Google Scholar 

  32. Takagi H (2009) [The new monitoring system for setting position, and for checking during irradiation and in the course of radiotherapy]. Nihon Hoshasen Gijutsu Gakkai zasshi 65:689–691

    Article  PubMed  Google Scholar 

  33. Drobyshevsky A, Song SK, Gamkrelidze G et al (2005) Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J Neurosci 25:5988–5997

    Article  CAS  PubMed  Google Scholar 

  34. Xydis V, Astrakas L, Zikou A et al (2006) Magnetization transfer ratio in the brain of preterm subjects: age-related changes during the first 2 years of life. Eur Radiol 16:215–220

    Article  PubMed  Google Scholar 

  35. Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    CAS  PubMed  Google Scholar 

  36. Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  CAS  PubMed  Google Scholar 

  37. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  38. Tzarouchi LC, Astrakas LG, Xydis V et al (2009) Age-related grey matter changes in preterm infants: an MRI study. Neuroimage 47:1148–1153

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Evans A, Hermoye L et al (2007) Evidence of slow maturation of the superior longitudinal fasciculus in early childhood by diffusion tensor imaging. Neuroimage 38:239–247

    Article  PubMed Central  PubMed  Google Scholar 

  40. Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377

    Article  PubMed  Google Scholar 

  41. Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  42. Schmahmann JD, Smith EE, Eichler FS et al (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Counsell SJ, Edwards AD, Chew AT et al (2008) Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain 131:3201–3208

    Article  PubMed  Google Scholar 

  44. Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16:1227–1233

    Article  PubMed  Google Scholar 

  45. van Kooij BJ, de Vries LS, Ball G et al (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 33:188–194

    Article  PubMed  Google Scholar 

  46. Nagy Z, Ashburner J, Andersson J et al (2009) Structural correlates of preterm birth in the adolescent brain. Pediatrics 124:e964–e972

    Article  PubMed  Google Scholar 

  47. Mullen KM, Vohr BR, Katz KH et al (2011) Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage 54:2563–2570

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lobel U, Sedlacik J, Gullmar D et al (2009) Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology 51:253–263

    Article  PubMed  Google Scholar 

  49. Astrakas LG, Argyropoulou MI (2010) Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping. Pediatr Radiol 40:1857–1867

    Article  PubMed  Google Scholar 

  50. Seo Y, Wang ZJ, Ball G et al (2013) Diffusion tensor imaging metrics in neonates-a comparison of manual region-of-interest analysis vs. tract-based spatial statistics. Pediatr Radiol 43:69–79

    Article  PubMed  Google Scholar 

  51. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Argyropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzarouchi, L.C., Drougia, A., Zikou, A. et al. Body growth and brain development in premature babies: an MRI study. Pediatr Radiol 44, 297–304 (2014). https://doi.org/10.1007/s00247-013-2822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-013-2822-y

Keywords

Navigation