Skip to main content

Advertisement

Log in

Acquired coronary disease in children: the role of multimodality imaging

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Coronary sequelae of Kawasaki disease, post-surgical coronary lesions and cardiac allograft vasculopathy are the main causes of acquired coronary pathology in childhood. Surveillance and timely recognition of coronary problems in children who are at risk of ischemic events are imperative and noninvasive imaging is increasingly utilized for these purposes. Herein, we summarize the causes of acquired coronary disease in children and discuss the role of various imaging techniques that are available to establish the diagnosis and guide management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALCAPA:

Anomalous left coronary artery from pulmonary artery

CMRI:

Cardiac magnetic resonance imaging

CCT:

Cardiac computed tomography

IVUS:

Intravascular ultrasound

PET:

Positron emission tomography

SSFP:

Steady state free precession

TGA:

Transposition of the great arteries

References

  1. Goo (2011) Cardiac MDCT in children: CT technology overview and interpretation. HW Radiol Clin North Am 49:997–1010

    Article  Google Scholar 

  2. McCrindle BW, Li JS, Minich LL et al (2007) Coronary artery involvement in children with Kawasaki disease: risk factors from analysis of serial normalized measurements. Circulation 116:174–179

    Article  PubMed  Google Scholar 

  3. Research Committee on Kawasaki Disease (1984) Report of subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesions in Kawasaki disease. Japanese Ministry of Health and Welfare, Tokyo

    Google Scholar 

  4. Margossian R, Lu M, Minich LL et al (2011) Predictors of coronary artery visualization in Kawasaki disease. J Am Soc Echocardiogr 24:53–59

    Article  PubMed  Google Scholar 

  5. Newburger JW, Takahashi M, Gerber MA et al (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110:2747–2771

    Article  PubMed  Google Scholar 

  6. Goo HW, Park IS, Ko JK et al (2006) Coronary CT angiography and MR angiography of kawasaki disease. Pediatr Radiol 36:697–705

    Article  PubMed  Google Scholar 

  7. Arnold R, Ley S, Ley-Zaporozhan J et al (2007) Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 37:998–1006

    Article  PubMed  Google Scholar 

  8. Greil GF, Seeger A, Miller S et al (2007) Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol 37:666–673

    Article  PubMed  Google Scholar 

  9. Carbone I, Cannata D, Algeri E et al (2007) Adolescent Kawasaki disease: usefulness of 64-slice CT coronary angiography for follow-up investigation. Pediatr Radiol 41:1165–1173

    Article  Google Scholar 

  10. Tacke CE, Kuipers IM, Groenink M et al (2011) Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imaging 4:712–720

    Article  PubMed  Google Scholar 

  11. Strigl S, Beroukhim R, Valente AM et al (2009) Feasibility of dobutamine stress cardiovascular magnetic resonance imaging in children. J Magn Reson Imaging 29:313–319

    Article  PubMed  Google Scholar 

  12. Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680

    Article  PubMed  Google Scholar 

  13. Paul JF, Rohnean A, Elfassy E et al (2011) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Article  PubMed  Google Scholar 

  14. Kroft LJ, Roelofs JJ, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16- detector row CT acquisitions. Pediatr Radiol 40:294–300

    Article  PubMed  Google Scholar 

  15. Sorantin E, Riccabona M, Stücklschweiger G et al (2012) Experience with volumetric (320 rows) pediatric CT. Eur J Radiol. Jan 5. [Epub ahead of print]

  16. Miéville FA, Gudinchet F, Rizzo E et al (2011) Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality-preliminary findings. Pediatr Radiol 41:1154

    Article  PubMed  Google Scholar 

  17. Newman B, Vasanawala SS (2011) Point/counterpoint: dose-related issues in cardiac CT imaging. Pediatr Radiol 41(Suppl 2):528–533

    Article  PubMed  Google Scholar 

  18. Legendre A, Losay J, Touchot-Kone A et al (2003) Coronary events after arterial switch operation for transposition of the great arteries. Circulation 108(Suppl 1):II186–II190

    PubMed  Google Scholar 

  19. Bonnet D, Bonhoeffer P, Piechaud JF et al (1996) Long-term fate of the coronary arteries after the arterial switch operation in newborns with transposition of the great arteries. Heart 76:274–279

    Article  PubMed  CAS  Google Scholar 

  20. Bonhoeffer P, Bonnet D, Piechaud JF et al (1997) Coronary artery obstruction after the arterial switch operation for transposition of the great arteries in newborns. J Am Coll Cardiol 29:202–206

    Article  PubMed  CAS  Google Scholar 

  21. Tanel RE, Wernovsky G, Landzberg MJ et al (1995) Coronary artery abnormalities detected at cardiac catheterization following the arterial switch operation for transposition of the great arteries. Am J Cardiol 76:153–157

    Article  PubMed  CAS  Google Scholar 

  22. Ou P, Mousseaux E, Azarine A et al (2006) Detection of coronary complications after the arterial switch operation for transposition of the great arteries: First experience with multislice computed tomography in children. J Thorac Cardiovasc Surg 131:639–643

    Article  PubMed  Google Scholar 

  23. Ou P, Celermajer DS, Marini D et al (2008) Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging 1:331–339

    Article  PubMed  Google Scholar 

  24. Hauser M, Bengel FM, Kuhn A et al (2001) Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and Ross operation. Circulation 103:1875–1880

    Article  PubMed  CAS  Google Scholar 

  25. Yates RW, Marsden PK, Badawi RD et al (2000) Evaluation of myocardial perfusion using positron emission tomography in infants following a neonatal arterial switch operation. Pediatr Cardiol 21:111–118

    Article  PubMed  CAS  Google Scholar 

  26. Rickers C, Sasse K, Buchert R et al (2000) Myocardial viability assessed by positron emission tomography in infants and children after the arterial switch operation and suspected infarction. J Am Coll Cardiol 36:1676–1683

    Article  PubMed  CAS  Google Scholar 

  27. Taylor AM, Dymarkowski S, Hamaekers P et al (2005) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547

    Article  PubMed  Google Scholar 

  28. Taylor AM, Thorne SA, Rubens MB et al (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and X-ray coronary angiography. Circulation 101:1670–1678

    Article  PubMed  CAS  Google Scholar 

  29. Li D, Kaushikkar S, Haacke EM et al (1996) Three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863

    PubMed  CAS  Google Scholar 

  30. Jahnke C, Paetsch I, Nehrke K et al (2005) Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: Feasibility and diagnostic performance. Eur Heart J 26:2313–2319

    Article  PubMed  Google Scholar 

  31. Spuentrup E, Bornert P, Botnar RM et al (2002) Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Invest Radiol 37:637–642

    Article  PubMed  Google Scholar 

  32. Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

    Article  PubMed  Google Scholar 

  33. Niendorf T, Hardy CJ, Giaquinto RO et al (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56:167–176

    Article  PubMed  Google Scholar 

  34. Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100

    Article  PubMed  Google Scholar 

  35. Azakie A, Russell JL, McCrindle BW et al (2003) Anatomic repair of anomalous left coronary artery from the pulmonary artery by aortic reimplantation: early survival, patterns of ventricular recovery and late outcome. Ann Thorac Surg 75:1535–1541

    Article  PubMed  Google Scholar 

  36. Isomatsu Y, Imai Y, Shin’oka T et al (2001) Surgical intervention for anomalous origin of the left coronary artery from the pulmonary artery: the Tokyo experience. J Thorac Cardiovasc Surg 121:792–797

    Article  PubMed  CAS  Google Scholar 

  37. Alexi-Meskishvili V, Nasseri BA, Nordmeyer S et al (2011) Repair of anomalous origin of the left coronary artery from the pulmonary artery in infants and children. J Thorac Cardiovasc Surg 142:868–874

    Article  PubMed  Google Scholar 

  38. Secinaro A, Ntsinjana H, Tann O et al (2011) Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson 13:27

    Article  PubMed  Google Scholar 

  39. Di Filippo S, Semiond B, Roriz R et al (2003) Non-invasive detection of coronary artery disease by dobutamine-stress echocardiography in children after heart transplantation. J Heart Lung Transplant 22:876–882

    Article  PubMed  Google Scholar 

  40. Romeo G, Houyel L, Angel CY et al (2005) Coronary stenosis detection by 16-slice computed tomography in heart transplant patients: comparison with conventional angiography and impact on clinical management. J Am Coll Cardiol 45:1826–1831

    Article  PubMed  Google Scholar 

  41. Rohnean A, Houyel L, Sigal-Cinqualbre A et al (2011) Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation 91:583–588

    Article  PubMed  Google Scholar 

  42. Summers RM, Andrasko-Bourgeois J, Feuerstein IM et al (1998) Evaluation of the aortic root by MRI: insights from patients with homozygous familial hypercholesterolemia. Circulation 98:509–518

    Article  PubMed  CAS  Google Scholar 

  43. Stamm C, Friehs I, Ho SY et al (2001) Congenital supravalvar aortic stenosis: a simple lesion? Eur J Cardiothorac Surg 19:195–202

    Article  PubMed  CAS  Google Scholar 

  44. Bonnet D, Cormier V, Villain E et al (1997) Progressive left main coronary artery obstruction leading to myocardial infarction in a child with Williams syndrome. Eur J Pediatr 156:751–753

    Article  PubMed  CAS  Google Scholar 

  45. Sun CC, Jacot J, Brenner JI (1992) Sudden death in supravalvular aortic stenosis: fusion of a coronary leaflet to the sinus ridge, dysplasia and stenosis of aortic and pulmonic valves. Pediatr Pathol 12:751–759

    Article  PubMed  CAS  Google Scholar 

  46. Thistlethwaite PA, Madani MM, Kriett JM et al (2000) Surgical management of congenital obstruction of the left main coronary artery with supravalvular aortic stenosis. J Thorac Cardiovasc Surg 120:1040–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phalla Ou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

2D-echocardiography in a 9-month-old child who had Kawasaki disease at the age of 6 weeks. There are patent motion abnormalities in the three apical views and parasternal short axis view at the level of papillary muscles (MPEG 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, P., Kutty, S., Khraiche, D. et al. Acquired coronary disease in children: the role of multimodality imaging. Pediatr Radiol 43, 444–453 (2013). https://doi.org/10.1007/s00247-012-2478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2478-z

Keywords

Navigation