Skip to main content
Log in

Digital radiography: optimization of image quality and dose using multi-frequency software

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults.

Objective

To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms.

Materials and methods

A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment.

Results

Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band.

Conclusion

By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ICRP (2004) Managing patient dose in digital radiology. ICRP Publication 93. Ann. ICRP 34:1–73

    Google Scholar 

  2. Reiner BI, Siegel EL, Siddiqui K et al (2006) Quality assurance: the missing link. Radiology 238:13–16

    Article  PubMed  Google Scholar 

  3. Seeram E (2011) Digital radiography, an introduction. Delmar Cengage Learning, New York

    Google Scholar 

  4. Gonzales RC, Woods RE (2008) Digital image processing. Prentice Hall (3), New Jersey

    Google Scholar 

  5. Canon Inc. (2008) CXDI Image Processing Software MLT(S) User’s Manual. Japan

  6. Beutel J, Sonka M, Fitzpatrick JM (2004) Handbook of medical imaging, vol. 2; Medical image processing and analysis. SPIE, Washington

  7. Bushberg JT, Seibert JA, Leidholdt EM et al (2002) The essential physics of medical imaging. Lippincott Williams & Wilkins (2), Philadelphia

    Google Scholar 

  8. Hart D, Wall BF, Shrimpton PC et al (2000) Reference doses and patient size in pediatric radiology. http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1195733786824

  9. Huda W (2004) Assessment of the problem: pediatric doses in screen-film and digital radiography. Pediatr Radiol 34(3):S173–S182

    Article  PubMed  Google Scholar 

  10. European Commission (1996) European guidelines on quality criteria for diagnostic radiographic images in pediatrics. Luxemborg

  11. Danish Society of Radiology (2006) Vejledning vedrørende Radiologiske Procedure

  12. Rapp-Bernhardt U, Bernhardt T, Lenzen H et al (2005) Experimental evaluation of a portable indirect flat-panel detector for the pediatric chest: comparison with storage phosphor radiography at different exposures by using a chest phantom. Radiology 237:485–491

    Article  PubMed  Google Scholar 

  13. Ludwig K, Ahlers K, Wormanns D et al (2005) Lumbar spine radiography: digital flat-panel detector versus screen-film and storage-phosphor systems in monkeys as a pediatric model. Radiology 229:140–154

    Article  Google Scholar 

  14. Hansson H, Båth M, Håkansson M et al (2005) An optimization strategy in a digital environment applied to neonatal chest imaging. Radiat Protect Dosim 114:278–285

    Article  Google Scholar 

  15. Uffmann M, Schaefer-Prokop C, Neitzel U et al (2005) Skeletal applications for flat-panel versus storage-phosphor radiography: effect of exposure on detection of low-contrast details. Radiology 231:506–514

    Article  Google Scholar 

  16. Artinis (2006) Manual—contrast-detail phantom. Artinis CDRAD type 2.0, Zetten

  17. International Commission on Radiation units and Measurements (1989) Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44, Maryland

  18. National Board of Health (2006) Pediatric radiation doses at Radiology. Published at webpage: http://www.sst.dk/publ/Publ2006/SIS/Boernedoser/Boernedoser_radiologi.pdf assessed the 17 October 2011

  19. Tingberg A, Sjöström D (2005) Optimisation of image plate radiography with respect to tube voltage. Radiat Protect Dosim 114:1–3

    Article  Google Scholar 

  20. Almén A, Tingberg A, Mattsson S et al (2000) The influence of different technique factors on image quality of lumbar spine radiographs as evaluated by established CEC image criteria. Br J Radiol 73:1192–1199

    PubMed  Google Scholar 

  21. Sund P, Båth M, Kheddache S et al (2004) Comparison of visual grading analysis and determination of detective quantum efficiency for evaluating system performance in digital chest radiography. Eur Radiol 14(1):143–150

    Google Scholar 

  22. Månsson LG (2000) Methods for the evaluation of image quality: a review. Radiat Protect Dosim 90:89–99

    Article  Google Scholar 

  23. Bontrager KL (2002) Textbook of radiographic positioning and related anatomi. Bontrager Publishing (4), Arizona

    Google Scholar 

  24. Lanhede B, Båth M, Kherddache S et al (2002) The influence of different technique factors on image quality of chest radiographs as evaluated by modified CEC image quality criteria. Br J Radiol 75:38–49

    PubMed  CAS  Google Scholar 

  25. Brennan PC, Johnston D (2002) Irish X-ray departments demonstrate varying levels of adherence to European guidelines on good radiographic technique. Br J Radiol 75:243–248

    PubMed  CAS  Google Scholar 

  26. Rainford LA, Al-Qattan E, McFadden S et al (2006) CEC analysis of radiological images produced in Europe and Asia. Radiography 13:202–209

    Article  Google Scholar 

  27. Larsen ALS (2006) Videnskab og forskning: en lærebog for professionsuddannelser. Gads Forlag (2):145

  28. Polit DF, Beck CT (2008) Nursing research generating and assessing evidence for nurcing practice. Lippincott Williams & Wilkins (8), Philadelphia

    Google Scholar 

  29. Norrman E (2007) Optimisation of radiographic imaging by means of factorial experiments. Doctoral Dissertation, University of Örebro, Sweden

  30. Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382

    Article  Google Scholar 

  31. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  32. Miller DP (2004) Obtain robust confidence intervals for any statistic. SAS Institute Inc. Proceedings of the Twenty-Ninth Annual SAS (R) User Group International Conference. SAS Institute Inc, North Carolina

    Google Scholar 

  33. Canon Inc. (2008) Multiobjective frequency processing function manual—MLT(S) edition. Japan

  34. Beutel J, Kundel HL, Van Metter RL (2000) Handbook of medical imaging, vol. 1; Physics and Psychophysics. SPIE, Washington

  35. Crevret S (2006) Statistical methods for dose-finding experiments. Wiley, England

    Book  Google Scholar 

  36. Eubank RL (1999) Nonparametric regression and spline smoothing. CRC press, New York

    Google Scholar 

  37. Härdle WK, Müller M, Sperlich S et al (2004) Nonparametric and semiparametric models. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Precht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Precht, H., Gerke, O., Rosendahl, K. et al. Digital radiography: optimization of image quality and dose using multi-frequency software. Pediatr Radiol 42, 1112–1118 (2012). https://doi.org/10.1007/s00247-012-2385-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2385-3

Keywords

Navigation