Advertisement

Pediatric Radiology

, Volume 41, Issue 12, pp 1578–1582 | Cite as

Prospective motion correction improves diagnostic utility of pediatric MRI scans

  • Joshua M. Kuperman
  • Timothy T. Brown
  • Mazyar E. Ahmadi
  • Matthew J. Erhart
  • Nathan S. White
  • J. Cooper Roddey
  • Ajit Shankaranarayanan
  • Eric T. Han
  • Dan Rettmann
  • Anders M. Dale
Technical Innovation

Abstract

A new technique for prospectively correcting head motion (called PROMO) during acquisition of high-resolution MRI scans has been developed to reduce motion artifacts. To evaluate the efficacy of PROMO, four T1-weighted image volumes (two with PROMO enabled, two uncorrected) were acquired for each of nine children. A radiologist, blind to whether PROMO was used, rated image quality and artifacts on all sagittal slices of every volume. These ratings were significantly better in scans collected with PROMO relative to those collected without PROMO (Mann-Whitney U test, P < 0.0001). The use of PROMO, especially in motion-prone patients, should improve the accuracy of measurements made for clinical care and research, and potentially reduce the need for sedation in children.

Keywords

Motion correction Head motion MRI Children 

Notes

Acknowledgements

The authors would like to thank the children and parents who volunteered to participate in this study, which was supported by grants from the National Institutes of Health Specialized Neuroscience Research Programs (U54 NS056883), the National Institute on Drug Abuse (RC2 DA029475), the National Institute of Neurological Disorders and Stroke (P50 NS022343), support from General Electric, and by a fellowship from the UCSD Institute for Neural Computation.

References

  1. 1.
    Hubbard A, Markowitz RI, Kimmel B, et al (1992) Sedation for pediatric patients undergoing CT and MRI. J Comput Assist Tomogr 16:3–6PubMedCrossRefGoogle Scholar
  2. 2.
    Sanborn P, Michna E, Zurakowski D, et al (2005) Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology 237:288–294PubMedCrossRefGoogle Scholar
  3. 3.
    Shankaranarayanan A, Roddey C, White NS, et al (2007) Motion insensitive 3D imaging using a novel real-time image-based 3D PROspective MOtion Correction Method (3D PROMO). ISMRM, GermanyGoogle Scholar
  4. 4.
    Brown TT, Kuperman JM, Erhart MJ, et al (2010) Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 53:139–145PubMedCrossRefGoogle Scholar
  5. 5.
    Gelb A (1974) Applied optimal estimation. MIT, CambridgeGoogle Scholar
  6. 6.
    White NS, Shankaranarayanan A, Han ET (2007) Prospective motion correction using nonlinear predictive filtering. ISMRM, GermanyGoogle Scholar
  7. 7.
    White NS, Roddey C, Shankaranarayanan A (2010) PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 63:91–105PubMedCrossRefGoogle Scholar
  8. 8.
    Roddey C, Shankaranarayanan A, Han ET (2008) Motion insensitive imaging using 3D PROspective MOtion (PROMO) correction with region-of-interest tracking. ISMRM, CanadaGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Joshua M. Kuperman
    • 1
    • 2
    • 3
  • Timothy T. Brown
    • 2
    • 4
  • Mazyar E. Ahmadi
    • 2
    • 3
  • Matthew J. Erhart
    • 2
    • 3
  • Nathan S. White
    • 2
    • 3
  • J. Cooper Roddey
    • 2
    • 3
  • Ajit Shankaranarayanan
    • 5
  • Eric T. Han
    • 5
  • Dan Rettmann
    • 6
  • Anders M. Dale
    • 2
    • 3
    • 4
  1. 1.La JollaUSA
  2. 2.Multimodal Imaging LaboratoryUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of RadiologyUniversity of California, San DiegoLa JollaUSA
  4. 4.Department of NeurosciencesUniversity of California, San DiegoLa JollaUSA
  5. 5.Applied Science Laboratory, GE HealthcareMenlo ParkUSA
  6. 6.Applied Science Laboratory, GE HealthcareRochesterUSA

Personalised recommendations