Skip to main content

Newer CT applications and their alternatives: what is appropriate in children?

Abstract

Innovations in image acquisition and reconstruction technologies have greatly expanded the range of CT applications available in the routine clinical setting. CT images of sub-millimeter resolution can now be acquired of entire body regions in a few seconds or even sub-second time, allowing depiction of fine anatomical detail uncompromised by motion artifact. With sophisticated visualization software, image data can be processed into multiplanar, volume-rendered, cine and other formats to better display anatomical abnormalities and facilitate newer applications such as CT angiography, enterography, urography, tracheobronchography and cardiac CT. Newer applications including dual-energy material decomposition CT are furthering the transition of CT from a purely morphological to a combined anatomical, functional and metabolic imaging technique. These newer applications have largely been pioneered in adult populations, and heightened concern of the risk of carcinogenesis from ionizing radiation tempers dissemination of their use in children. Similar information can often be gleaned from alternative imaging modalities without ionizing radiation exposure, such as MRI and US, and what is most appropriate in children will depend on relative diagnostic efficacy, cost, availability and local expertise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff 20:30–42

    CAS  Article  Google Scholar 

  2. Kalender WA (2006) X-ray computed tomography. Phys Med Biol 51:R29–R43

    PubMed  Article  Google Scholar 

  3. Rogalla P, Kloeters C, Hein PA (2009) CT technology overview: 64-slice and beyond. Radiol Clin N Am 47:1–11

    PubMed  Article  Google Scholar 

  4. Bhargavan M (2008) Trends in the utilization of medical procedures that use ionizing radiation. Health Phys 95:612–627

    PubMed  CAS  Article  Google Scholar 

  5. Broder J, Fordham LA, Warshauer DM (2007) Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg Radiol 14:227–232

    PubMed  Article  Google Scholar 

  6. Roudsari B, Moore DS, Jarvik JG (2010) Trend in the utilization of CT for adolescents admitted to an adult level 1 trauma center. J Am Coll Radiol 7:796–801

    PubMed  Article  Google Scholar 

  7. Dorfman AL, Fazel R, Einstein A et al (2011) Use of medical imaging procedures with ionizing radiation in children: a population-based study. Arch Pediatr Adolesc Med [Epub ahead of print].

  8. Townsend BA, Callahan MJ, Zurakowski D et al (2010) Has pediatric CT at children’s hospitals reached its peak? AJR 194:1194–1196

    PubMed  Article  Google Scholar 

  9. Hellinger JC, Epelman M, Rubin GD (2010) Upper extremity computed tomographic angiography: state of the art technique and applications in 2010. Radiol Clin N Am 48:397–421

    PubMed  Article  Google Scholar 

  10. Vo NJ, Hammelman BD, Racadio JM et al (2006) Anatomic distribution of renal artery stenosis in children: implications for imaging. Pediatr Radiol 36:1032–1036

    PubMed  Article  Google Scholar 

  11. Van Helvoort-Postulart D, Dirksen CD, Nelemans PJ et al (2007) Renal artery stenosis: cost-effectiveness of diagnosis and treatment. Radiology 244:505–513

    PubMed  Article  Google Scholar 

  12. Roebuck D (2008) Childhood hypertension: what does the radiologist contribute? Pediatr Radiol 38(Suppl 3):S501–S507

    PubMed  Article  Google Scholar 

  13. Kritsaneepaiboon S, Lee EY, Zurakowski D et al (2009) MDCT pulmonary angiography evaluation of pulmonary embolism in children. AJR 192:1246–1252

    PubMed  Article  Google Scholar 

  14. Lee EY, Zurakowski D, Boiselle PM (2010) Pulmonary embolism in pediatric patients survey of CT pulmonary angiography practices and policies. Acad Radiol 17:1543–1549

    PubMed  Article  Google Scholar 

  15. Sostman HD, Stein PD, Gottschalk A et al (2008) Acute pulmonary embolism: sensitivity and specificity of ventilation-perfusion scintigraphy in PIOPED II study. Radiology 246:941–946

    PubMed  Article  Google Scholar 

  16. Gelfand MJ, Gruppo RA, Nasser MP (2008) Ventilation-perfusion scintigraphy in children and adolescents is associated with a low rate of indeterminate studies. Clin Nucl Med 33:606–609

    PubMed  Article  Google Scholar 

  17. Babyn PS, Gahunia HK, Massicotte P (2005) Pulmonary thromboembolism in children. Pediatr Radiol 35:258–274

    PubMed  Article  Google Scholar 

  18. Lee EY, Kritsaneepaiboon S, Zurakowski D et al (2009) Beyond the pulmonary arteries: alternative diagnoses in children with MDCT pulmonary angiography negative for pulmonary embolism. AJR 193:888–894

    PubMed  Article  Google Scholar 

  19. Stein PD, Chenevert TL, Fowler SE et al (2010) Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med 152:W142–W143

    Google Scholar 

  20. Ley S, Kauczor HU (2008) MR imaging/magnetic resonance angiography of the pulmonary arteries and pulmonary thromboembolic disease. Magn Reson Imaging Clin N Am 16:263–273

    PubMed  Article  Google Scholar 

  21. Sena L, Krishnamurthy R, Chung T (2007) Pediatric cardiac CT. In: Lucaya J, Strife J (eds) Pediatric chest imaging. Springer, Berlin, pp 361–395

    Google Scholar 

  22. Petersilka M, Bruder H, Krauss B et al (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    PubMed  Article  Google Scholar 

  23. Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706

    PubMed  Article  Google Scholar 

  24. Sakuma H (2011) Coronary CT versus MR angiography: the role of MR angiography. Radiology 258:340–349

    PubMed  Article  Google Scholar 

  25. Prabhu SP, Mahmood S, Sena L et al (2009) MDCT evaluation of pulmonary embolism in children and young adults following a lateral Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol 39:938–944

    PubMed  Article  Google Scholar 

  26. Schievano S, Capelli C, Young C et al (2011) Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur Radiol 21:36–45

    PubMed  Article  Google Scholar 

  27. Yedururi S, Guillerman RP, Chung T et al (2008) Multimodality imaging of tracheobronchial pathology in children. Radiographics 28:e29

    PubMed  Article  Google Scholar 

  28. Kroft LJM, Roelofs JJH, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300

    PubMed  Article  Google Scholar 

  29. Lee KS, Boiselle PM (2010) Update on multidetector computed tomography imaging of the airways. J Thorac Imaging 25:112–124

    PubMed  Article  Google Scholar 

  30. Ferretti GR, Jankowski A, Perrin MA et al (2008) Multi-detector CT evaluation in patients suspected of tracheobronchomalacia: comparison of end-expiratory with dynamic expiratory volumetric acquisitions. Eur J Radiol 68:340–346

    PubMed  Article  Google Scholar 

  31. Lee EY, Litmanovich D, Boiselle PM (2009) Multidetector CT evaluation of tracheobronchomalacia. Radiol Clin N Am 49:261–269

    Article  Google Scholar 

  32. Murgu SD, Colt HG (2007) Description of a multidimensional classification system for patients with expiratory central airways collapse. Respirology 12:543–550

    PubMed  Article  Google Scholar 

  33. Vucelic B (2009) Inflammatory bowel disease: controversies in the use of diagnostic procedures. Dig Dis 27:269–277

    PubMed  Article  Google Scholar 

  34. Zimmerman EM, Al-Hawary MM (2011) MRI of the small bowel in patients with Crohn’s disease. Curr Opin Gastroenterol 27:132–138

    Article  Google Scholar 

  35. Stuart S, Conner T, Ahmed A et al (2011) The smaller bowel: imaging the small bowel in paediatric Crohn’s disease. Postgrad Med J 87:288–297

    PubMed  Article  Google Scholar 

  36. Shyn PB, Mortele KJ, Britz-Cunningham SH et al (2010) Low-dose 18F-FDG PET/CT enterography: improving on CT enterography assessment of patients with Crohn disease. J Nucl Med 51:1841–1848

    PubMed  Article  Google Scholar 

  37. Boriskin HS, Devito BS, Hines JJ et al (2009) CT enterography vs. capsule endoscopy. Abdom Imaging 34:149–155

    PubMed  Article  Google Scholar 

  38. Zappa M, Stefanescu C, Cazals-Hatem D et al (2011) Which magnetic resonance findings accurately evaluate inflammation in small bowel Crohn’s disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis 17:984–993

    PubMed  Article  Google Scholar 

  39. Giusti S, Faggioni L, Neri E et al (2010) Dynamic MRI of the small bowel: usefulness of quantitative contrast-enhancement parameters and time-signal intensity curves for differentiating between active and inactive Crohn’s disease. Abdom Imaging 35:646–653

    PubMed  Article  Google Scholar 

  40. Huprich JE, Rosen MP, Fidler JL et al (2010) ACR appropriateness criteria on Crohn’s disease. J Am Coll Radiol 7:94–102

    PubMed  Article  Google Scholar 

  41. Kambadakone AR, Prakash P, Hahn PF et al (2010) Low-dose CT examinations in Crohn’s disease: impact on image quality, diagnostic performance, and radiation dose. AJR 195:78–88

    PubMed  Article  Google Scholar 

  42. Sauer CG, Kugathasan S, Martin DR et al (2011) Medical radiation exposure in children with inflammatory bowel disease estimates high cumulative doses. Inflamm Bowel Dis [Epub ahead of print].

  43. Siddiki HA, Fidler JL, Fletcher JG et al (2009) Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn’s disease. AJR 193:113–121

    PubMed  Article  Google Scholar 

  44. Paolantonia P, Ferrari R, Vecchietti F et al (2009) Current status of MR imaging in the evaluation of IBD in a pediatric population of patients. Eur J Radiol 69:418–424

    Article  Google Scholar 

  45. Huprich JE, Fletcher JG, Alexander JA et al (2008) Obscure gastrointestinal bleeding: evaluation with 64-section multiphase CT enterography—initial experience. Radiology 246:562–571

    PubMed  Article  Google Scholar 

  46. Saperas E, Dot J, Videla S et al (2007) Capsule endoscopy versus computed tomographic or standard angiography for the diagnosis of obscure gastrointestinal bleeding. Am J Gastroenterol 102:731–737

    PubMed  Article  Google Scholar 

  47. ASGE Standards of Practice Committee (2010) The role of endoscopy in the management of obscure GI bleeding. Gastrointest Endosc 72:471–479

    Article  Google Scholar 

  48. O’Connor OJ, Fitzgerald E, Maher MM (2010) Imaging of hematuria. AJR 195:W263–W267

    PubMed  Article  Google Scholar 

  49. Riccabona M, Avni FE, Dacher JN et al (2010) ESPR uroradiology task force and ESUR paediatric working group: imaging and procedural recommendations in paediatric uroradiology, part III. Minutes of the ESPR uroradiology task force minisymposium on intravenous urography, uro-CT and MR-urography in childhood. Pediatr Radiol 40:1315–1320

    PubMed  Article  Google Scholar 

  50. Kekelidze M, Dwarkasing RS, Dijkshoorn ML et al (2010) Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop—protocol design, opacification, and image quality analysis. Radiology 255:508–516

    PubMed  Article  Google Scholar 

  51. Ruano R, Molho M, Roume J et al (2004) Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computed tomography. Ultrasound Obstet Gynecol 24:134–140

    PubMed  CAS  Article  Google Scholar 

  52. Cassart M (2010) Suspected fetal malformations or bone diseases: how to explore. Pediatr Radiol 40:1046–1051

    PubMed  Article  Google Scholar 

  53. Preston DL, Cullings H, Suyama A et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436

    PubMed  Article  Google Scholar 

  54. Ray JG, Schull MJ, Urquia ML et al (2010) Major radiodiagnostic imaging in pregnancy and the risk of childhood malignancy: a population-based cohort study in Ontario. PLoS Med 7:e1000337

    PubMed  Article  Google Scholar 

  55. Boice JD Jr (2011) Lauriston S. Taylor lecture: radiation epidemiology—the golden age and future challenges. Health Phys 100:59–76

    PubMed  CAS  Article  Google Scholar 

  56. McCollough CH, Schueler BA, Atwell TD et al (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27:909–917

    PubMed  Article  Google Scholar 

  57. Brody AS, Guillerman RP (2002) Radiation risk from diagnostic imaging. Pediatr Ann 31:643–647

    PubMed  Google Scholar 

  58. Liu X, Yu L, Primak AN et al (2009) Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 36:1602–1609

    PubMed  Article  Google Scholar 

  59. Holmes DR 3rd, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    PubMed  Article  Google Scholar 

  60. Yeh BM, Shepherd JA, Wang ZJ et al (2009) Dual-energy and low-kVp CT in the abdomen. AJR 193:47–54

    PubMed  Article  Google Scholar 

  61. Coursey CA, Nelson RC, Boll DT et al (2010) Dual-energy multidetector: How does it work, what can it tell us, and when can we use it in abdominopelvic imaging. Radiographics 30:1037–1055

    PubMed  Article  Google Scholar 

  62. Kang M-J, Park CM, Lee C-H et al (2010) Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics 30:685–698

    PubMed  Article  Google Scholar 

  63. Feuerlein S, Roessl E, Proksa R et al (2008) Multienergy photon-counting k-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology 249:1010–1016

    PubMed  Article  Google Scholar 

  64. Hidas G, Eliahou R, Duvdevani M et al (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology 257:394–401

    PubMed  Article  Google Scholar 

  65. Mahgerefteh S, Blachar A, Fraifeld S et al (2010) Dual-energy derived virtual nonenhanced computed tomography imaging: current status and applications. Semin Ultrasound CT MR 31:321–327

    PubMed  Article  Google Scholar 

  66. Yu L, Liu X, Leng S et al (2009) Radiation dose reduction in computed tomography: techniques and future perspectives. Imaging Med 1:65–84

    Article  Google Scholar 

  67. Yu L, Primak AN, Liu X et al (2009) Image quality optimization and evaluation of linearly mixed images in dual-source dual-energy CT. Med Phys 36:1019–1024

    PubMed  Article  Google Scholar 

  68. Graser A, Johnson TR, Chandarana H et al (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    PubMed  Article  Google Scholar 

  69. Takahashi N, Hartman RP, Vrtiska TJ et al (2008) Dual energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR 190:1169–1173

    PubMed  Article  Google Scholar 

  70. Ferda J, Novak M, Mirka H et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19:2518–2522

    PubMed  Article  Google Scholar 

  71. Tran DN, Straka M, Roos JE et al (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171

    PubMed  Article  Google Scholar 

  72. Stolzmann P, Frauenfelder T, Pfammatter T et al (2008) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    PubMed  Article  Google Scholar 

  73. Brown CL, Hartman RP, Dzyubak OP et al (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19:1289–1295

    PubMed  CAS  Article  Google Scholar 

  74. Thieme SF, Becker CR, Hacker M et al (2008) Dual energy CT for the assessment of lung perfusion: correlation to scintigraphy. Eur J Radiol 68:369–374

    PubMed  Article  Google Scholar 

  75. Ruzsics B, Lee H, Zwerner PL et al (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia: initial experience. Eur Radiol 18:2414–2424

    PubMed  Article  Google Scholar 

  76. Nicolaou A, Eftekhari A, Sedlic T et al (2008) The utilization of dual source CT in imaging of polytrauma. Eur J Radiol 68:398–408

    PubMed  CAS  Article  Google Scholar 

  77. Chen G-H, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35:660–663

    PubMed  Article  Google Scholar 

  78. Liu X, Primak AN, Krier JD et al (2009) Renal perfusion and hemodynamics: accurate in vivo determination at CT with a 10-fold decrease in radiation dose and HYPR noise reduction. Radiology 253:98–105

    PubMed  Article  Google Scholar 

  79. Supanich M, Tao Y, Nett B et al (2009) Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction. Phys Med Biol 54:4575–4593

    PubMed  Article  Google Scholar 

  80. Rossi A, Gandolfo C, Morana G et al (2010) New MR sequences (diffusion, perfusion, spectroscopy) in brain tumors. Pediatr Radiol 40:999–1009

    PubMed  Article  Google Scholar 

  81. Wang J, Licht DJ (2006) Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clin N Am 16:149–167

    PubMed  Article  Google Scholar 

  82. Grattan-Smith JD, Jones RA (2006) MR urography in children. Pediatr Radiol 36:1119–1132

    PubMed  Article  Google Scholar 

  83. Yilmaz O, Savas R, Sogut A et al (2009) Effectiveness of magnetic resonance angiography in the evaluation of lung perfusion in constrictive bronchiolitis obliterans. Respirology 14:295–298

    PubMed  Article  Google Scholar 

  84. Kambadakone AR, Eisner BH, Catalano OA et al (2010) New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics 30:603–623

    PubMed  Article  Google Scholar 

  85. Ascenti G, Siragusa C, Racchiusa S et al (2010) Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. AJR 195:953–958

    PubMed  Article  Google Scholar 

  86. Grosjean R, Sauer B, Guerra RM et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR 190:720–728

    PubMed  Article  Google Scholar 

  87. Fischer MA, Reiner CS, Raptis D et al (2011) Quantification of liver iron content with CT—added value of dual-energy. Eur Radiol [Epub ahead of print].

  88. Royal SA, Beiderman BA, Goldberg HI et al (1979) Detection and estimation of iron, glycogen and fat in liver of children with hepatomegaly using computed tomography (CT). Pediatr Res 13:408

    Google Scholar 

  89. Porter JB, Shah FT (2010) Iron overload in thalassemia and related conditions: therapeutic goals and assessment of response to chelation therapies. Hematol Oncol Clin North Am 24:1109–1130

    PubMed  Article  Google Scholar 

  90. Hazirolan T, Akpinar B, Unal S et al (2008) Value of dual energy computed tomography for detection of myocardial iron deposition in thalassaemia patients: initial experience. Eur J Radiol 68:442–445

    PubMed  Article  Google Scholar 

  91. St. Pierre TG, Clark PR, Chua-anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861

    PubMed  CAS  Article  Google Scholar 

  92. Hankins JS, McCarville MB, Loeffler RB et al (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113:4853–4855

    PubMed  CAS  Article  Google Scholar 

  93. Boll DT, Marin D, Redmon GM et al (2010) Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point Dixon MRI at 3T: in vitro and in vivo results of a 2D decomposition technique. AJR 194:964–971

    PubMed  Article  Google Scholar 

  94. Hesham A-Kader H (2009) Nonalcoholic fatty liver disease in children living in the obeseogenic society. World J Pediatr 5:245–254

    PubMed  CAS  Article  Google Scholar 

  95. Park YS, Park SH, Lee SS et al (2011) Biopsy-proven nonsteatotic liver in adults: estimation of reference range for difference in attenuation between the liver and spleen at nonenhanced CT. Radiology 258:760–766

    PubMed  Article  Google Scholar 

  96. Ma X, Holalkere N-S, Kambadakone A et al (2009) Imaging-based quantification of hepatic fat: methods and clinical applications. Radiographics 29:1253–1280

    PubMed  Article  Google Scholar 

  97. Fischer MA, Gnannt R, Raptis D et al (2011) Quantification of liver fat in the presence of iron and iodine. An ex-vivo dual-energy CT study. Invest Radiol [Epub ahead of print].

  98. Cassidy FH, Yokoo T, Aganovic L et al (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29:231–260

    PubMed  Article  Google Scholar 

  99. Goo HW, Yang DH, Hong S-J et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497

    PubMed  Article  Google Scholar 

  100. Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    PubMed  Article  Google Scholar 

  101. Altes TA, de Lange EE (2003) Applications of hyperpolarized helium-3 gas magnetic resonance imaging in pediatric lung disease. Top Magn Reson Imaging 14:231–236

    PubMed  Article  Google Scholar 

  102. Matsuoka S, Patz S, Albert MS et al (2009) Hyperpolarized gas MR imaging of the lung: current status as a research tool. J Thorac Imaging 24:181–188

    PubMed  Article  Google Scholar 

  103. Pache G, Krauss B, Strohm P et al (2010) Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 256:617–624

    PubMed  Article  Google Scholar 

  104. Johnson TRC, Kraub B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    PubMed  Article  Google Scholar 

  105. Bockisch A, Freudenberg LS, Schmidt D et al (2009) Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med 39:276–289

    PubMed  Article  Google Scholar 

  106. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR 30:1088–1095

    PubMed  CAS  Article  Google Scholar 

  107. Helm EJ, Silva CT, Roberts HC et al (2009) Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience. Pediatr Radiol 39:685–693

    PubMed  Article  Google Scholar 

  108. Yanagawa M, Tomiyama N, Honda O et al (2010) Multidetector CT of the lung: image quality with garnet-based detectors. Radiology 255:944–954

    PubMed  Article  Google Scholar 

  109. Prakash P, Kalra MK, Ackman JB et al (2010) Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 256:261–269

    PubMed  Article  Google Scholar 

  110. Wang G, Yu H, Ye Y (2009) A scheme for multisource interior tomography. Med Phys 36:3575–3581

    PubMed  Article  Google Scholar 

  111. Boll DT, Patil NA, Paulson EK et al (2010) Focal cystic high-attenuation lesions: characterization in renal phantom by using photon-counting spectral CT—improved differentiation of lesion composition. Radiology 254:270–276

    PubMed  Article  Google Scholar 

Download references

Disclaimer

The supplement this article is part of is not sponsored by the industry. Dr. Guillerman has no financial interest, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Paul Guillerman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guillerman, R.P. Newer CT applications and their alternatives: what is appropriate in children?. Pediatr Radiol 41, 534 (2011). https://doi.org/10.1007/s00247-011-2163-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-011-2163-7

Keywords

  • ALARA
  • CT
  • Dual-energy
  • Material decomposition
  • Angiography
  • Children