Skip to main content
Log in

Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

T1- and T2-W MR sequences used for obtaining diagnostic information and morphometric measurements in the neonatal brain are frequently acquired using different imaging protocols. Optimizing one protocol for obtaining both kinds of information is valuable.

Objective

To determine whether high-resolution T1- and T2-W volumetric sequences optimized for preterm brain imaging could provide both diagnostic and morphometric value.

Materials and methods

Thirty preterm neonates born between 24 and 32 weeks’ gestational age were scanned during the first 2 weeks after birth. T1- and T2-W high-resolution sequences were optimized in terms of signal-to-noise ratio, contrast-to-noise ratio and scan time and compared to conventional spin-echo-based sequences.

Results

No differences were found between conventional and high-resolution T1-W sequences for diagnostic confidence, image quality and motion artifacts. A preference for conventional over high-resolution T2-W sequences for image quality was observed. High-resolution T1 images provided better delineation of thalamic myelination and the superior temporal sulcus. No differences were found for detection of myelination and sulcation using conventional and high-resolution T2-W images.

Conclusion

High-resolution T1- and T2-W volumetric sequences can be used in clinical MRI in the very preterm brain to provide both diagnostic and morphometric information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holland BA, Haas DK, Norman D et al (1986) MRI of normal brain maturation. AJNR 7:201–208

    PubMed  CAS  Google Scholar 

  2. Barkovich AJ, Kjos BO, Jackson DE Jr et al (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  3. van der Knaap MS, van Wezel-Meijler G, Barth PG et al (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200:389–396

    PubMed  Google Scholar 

  4. Barkovich AJ (1998) MR of the normal neonatal brain: assessment of deep structures. AJNR 19:1397–1403

    PubMed  CAS  Google Scholar 

  5. Huppi PS, Inder TE (2001) Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions. Semin Neonatol 6:195–210

    Article  PubMed  CAS  Google Scholar 

  6. Counsell SJ, Maalouf EF, Fletcher AM et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR 23:872–881

    PubMed  Google Scholar 

  7. Counsell SJ, Rutherford MA, Cowan FM et al (2003) Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 88:F269–274

    Article  PubMed  CAS  Google Scholar 

  8. Barkovich AJ (2005) Pediatric neuroimaging. Lippincott, Philadelphia

    Google Scholar 

  9. Dyet LE, Kennea N, Counsell SJ et al (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548

    Article  PubMed  Google Scholar 

  10. Arthur R (2006) Magnetic resonance imaging in preterm infants. Pediatr Radiol 36:593–607

    Article  PubMed  Google Scholar 

  11. Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592

    Article  PubMed  Google Scholar 

  12. Barkovich AJ (2006) MR imaging of the neonatal brain. Neuroimaging Clin N Am 16:117–135, viii-ix

    Article  PubMed  CAS  Google Scholar 

  13. Nowell MA, Hackney DB, Zimmerman RA et al (1987) Immature brain: spin-echo pulse sequence parameters for high-contrast MR imaging. Radiology 162:272–273

    PubMed  CAS  Google Scholar 

  14. Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266

    Article  PubMed  CAS  Google Scholar 

  15. Jones RA, Palasis S, Grattan-Smith JD (2004) MRI of the neonatal brain: optimization of spin-echo parameters. AJR 182:367–372

    PubMed  Google Scholar 

  16. Williams LA, DeVito TJ, Winter JD et al (2007) Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T. Magn Reson Imaging 25:1162–1170

    Article  PubMed  Google Scholar 

  17. Conklin J, Winter JD, Thompson RT et al (2008) High-contrast 3D neonatal brain imaging with combined T1- and T2-weighted MP-RAGE. Magn Reson Med 59:1190–1196

    Article  PubMed  Google Scholar 

  18. van Wezel-Meijler G, Leijser LM, de Bruine FT et al (2009) Magnetic resonance imaging of the brain in newborn infants: practical aspects. Early Hum Dev 85:85–92

    Article  PubMed  Google Scholar 

  19. Vymazal J, Righini A, Brooks RA et al (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211:489–495

    PubMed  CAS  Google Scholar 

  20. Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med 54:507–512

    Article  PubMed  Google Scholar 

  21. Deoni SC, Williams SC, Jezzard P et al (2008) Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T. Neuroimage 40:662–671

    Article  PubMed  Google Scholar 

  22. Wright PJ, Mougin OE, Totman JJ et al (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21:121–130

    Article  PubMed  CAS  Google Scholar 

  23. Counsell SJ, Herlihy AH, Robertson NJ et al (2000) Elevation of T1 and T2 values in the cerebral white matter in periventricular leukomalacia (abstr). The Eighth Annual Meeting of the International Society for Magnetic Resonance in Medicine. Proc Intl Soc Mag Reson Med, Denver, CO, p 1933

  24. Counsell SJ, Kennea NL, Herlihy AH et al (2003) T2 relaxation values in the developing preterm brain. AJNR 24:1654–1660

    PubMed  Google Scholar 

  25. Lewis HJ, Allsop JM, Counsell SJ et al (2001) MR quantification of the brain in preterm infants at term equivalent age (abstr). The Ninth Annual Meeting of the International Society for Magnetic Resonance in Medicine. Proc Intl Soc Mag Reson Med, Glasgow, UK p 405

  26. Ferrie JC, Barantin L, Saliba E et al (1999) MR assessment of the brain maturation during the perinatal period: quantitative T2 MR study in premature newborns. Magn Reson Imaging 17:1275–1288

    Article  PubMed  CAS  Google Scholar 

  27. Thornton JS, Amess PN, Penrice J et al (1999) Cerebral tissue water spin-spin relaxation times in human neonates at 2.4 tesla: methodology and the effects of maturation. Magn Reson Imaging 17:1289–1295

    Article  PubMed  CAS  Google Scholar 

  28. Williams LA, Gelman N, Picot PA et al (2005) Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T—initial experience. Radiology 235:595–603

    Article  PubMed  Google Scholar 

  29. Herlihy AH, Counsell SJ, Rutherford MA et al (1999) T1 and T2 measurements of the preterm brain (abstr). The Seventh Annual Meeting of the International Society for Magnetic Resonance in Medicine. Proc Intl Soc Mag Reson Med, Philadelphia, PA, p 531

  30. Huppi PS, Warfield S, Kikinis R et al (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235

    Article  PubMed  CAS  Google Scholar 

  31. Prastawa M, Gilmore JH, Lin W et al (2005) Automatic segmentation of MR images of the developing newborn brain. Med Image Anal 9:457–466

    Article  PubMed  Google Scholar 

  32. Xue H, Srinivasan L, Jiang S et al (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 38:461–477

    Article  PubMed  Google Scholar 

  33. Anbeek P, Vincken KL, Groenendaal F et al (2008) Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging. Pediatr Res 63:158–163

    Article  PubMed  Google Scholar 

  34. Dubois J, Benders M, Cachia A et al (2008) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18:1444–1454

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen The Tich S, Anderson PJ, Shimony JS et al (2009) A novel quantitative simple brain metric using MR imaging for preterm infants. AJNR 30:125–131

    Article  PubMed  CAS  Google Scholar 

  36. Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. NeuroImage 47:564–572

    Article  PubMed  Google Scholar 

  37. Merisaari H, Parkkola R, Alhoniemi E et al (2009) Gaussian mixture model-based segmentation of MR images taken from premature infant brains. J Neurosci Methods 182:110–122

    Article  PubMed  Google Scholar 

  38. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34:910–914

    Article  PubMed  CAS  Google Scholar 

  39. Cheng HL, Wright GA (2006) Rapid high-resolution T(1) mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574

    Article  PubMed  Google Scholar 

  40. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  PubMed  CAS  Google Scholar 

  41. Haacke EM, Brown RW, Thompson MR et al (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, Toronto

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Canadian Institute of Health Research (CIHR MOP-84399). We would like to thank the time and effort spent by our neuroradiologist raters, Drs. M.M. Shroff, C. Raybaud, J.P. Soares-Fernandes and B. Thomas. We thank MRI technologists Garry Detzler and Ruth Weiss and NICU nurses Angela Thompson and Deborah Singleton, who helped with patient recruitment and were responsible for the well-being of the neonates during scanning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revital Nossin-Manor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nossin-Manor, R., Chung, A.D., Morris, D. et al. Optimized T1- and T2-weighted volumetric brain imaging as a diagnostic tool in very preterm neonates. Pediatr Radiol 41, 702–710 (2011). https://doi.org/10.1007/s00247-010-1955-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1955-5

Keywords

Navigation