Skip to main content


Log in

Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript



Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy.


To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease.

Materials and methods

Thirty-one treatment-naïve osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006–2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response ≥90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out.


Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume.


In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Saeter G, Hoie J, Stenwig AE et al (1995) Systemic relapse of patients with osteogenic sarcoma: prognostic factors for long term survival. Cancer 75:1084–1093

    Article  PubMed  CAS  Google Scholar 

  2. Enneking WF, Spanier SS, Goodman MA (1980) A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop 153:106–120

    PubMed  Google Scholar 

  3. Miller AB, Hoogstraten B, Staquet M et al (1981) Reporting results of cancer treatment. Cancer 47:207–214

    Article  PubMed  CAS  Google Scholar 

  4. Uhl M, Saueressig U, Koehler G et al (2006) Evaluation of tumor necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 36:1306–1311

    Article  PubMed  Google Scholar 

  5. Dudeck O, Zeile M, Pink D et al (2003) Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging 27:1109–1113

    Article  Google Scholar 

  6. Moffat BA, Chenevert TL, Meyer CR et al (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8:259–267

    Article  PubMed  CAS  Google Scholar 

  7. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR 188:1622–1635

    Article  PubMed  Google Scholar 

  8. Schnall MD, Blume J, Bluemke DA et al (2006) Diagnostic architectural and dynamic features at breast MR imaging: multicenter study 1. Radiology 238:42–53

    Article  PubMed  Google Scholar 

  9. Greene FL, Page DL, Fleming ID et al (2002) AJCC cancer staging manual, 6th edn. Springer, New York

    Book  Google Scholar 

  10. Picci P, Bacci G, Campanacci M et al (1985) Histological evaluation of necrosis in osteosarcoma induced by chemotherapy. Regional mapping of viable and nonviable tumor. Cancer 56:1515

    Article  PubMed  CAS  Google Scholar 

  11. Bacci G, Picci P, Ruggieri P et al (1990) Primary chemotherapy and delayed surgery (neoadjuvant chemotherapy) for osteosarcoma of the extremities. The Instituto Rizzoli experience in 127 patients treated preoperatively with intravenous methotrexate (high versus moderate doses) and intraarterial cisplatin. Cancer 65:2539–2553

    Article  PubMed  CAS  Google Scholar 

  12. Winkler K, Beron G, Delling G et al (1988) Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol 6:329–337

    PubMed  CAS  Google Scholar 

  13. Withers HR, Lee SP (2006) Modeling growth kinetics and statistical distribution of oligometastases. Semin Radiat Oncol 16:111–119

    Article  PubMed  Google Scholar 

  14. Pervaiz S (2002) Anti-cancer drugs of today and tomorrow: are we close to making the turn from treating to curing cancer? Curr Pharm Des 8:1723–1734

    Article  PubMed  CAS  Google Scholar 

  15. Nathan SS, DiResta GR, Casas-Ganem JE et al (2005) Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma. Clin Cancer Res 11:2389–2397

    Article  PubMed  CAS  Google Scholar 

  16. Brisse H, Ollivier L, Edeline V et al (2004) Imaging of malignant tumors of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 34:595–605

    Article  PubMed  Google Scholar 

  17. Jones DN, McCowage GB, Sostman HD et al (1996) Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37:1438–1444

    PubMed  CAS  Google Scholar 

  18. Kim MS, Lee SY, Cho WH et al (2008) Initial tumor size predicts histologic response and survival in localized osteosarcoma patients. J Surg Oncol 97:456–461

    Article  PubMed  Google Scholar 

  19. Vander Woude HJ, Bloem JL, Hogendoorn PC (1998) Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing’s sarcoma: review of current imaging modalities. Skeletal Radiol 27:57–71

    Article  CAS  Google Scholar 

  20. Kim MS, Lee SY, Cho WH et al (2008) Tumor necrosis rate adjusted by tumor volume change is a better predictor of survival of localized osteosarcoma patients. Ann Surg Oncol 15:906–914

    Article  PubMed  Google Scholar 

  21. Lee JA, Kim MS, Kim DH et al (2008) Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatr Blood Cancer 50:195–200

    Article  PubMed  Google Scholar 

  22. Groninger E, Proost JH, de Graaf SS (2004) Pharmacokinetic studies in children with cancer. Crit Rev Oncol Hematol 52:173–197

    Article  PubMed  CAS  Google Scholar 

  23. Kaste SC, Liu T, Billups CA et al (2004) Tumor size as a predictor of outcome in pediatric non-metastatic osteosarcoma of the extremity. Pediatr Blood Cancer 43:723–728

    Article  PubMed  Google Scholar 

  24. Uhl M, Saueressig U, van Buiren M et al (2006) Preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41:618–623

    Article  PubMed  CAS  Google Scholar 

  25. Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643

    Article  PubMed  Google Scholar 

  26. Theilmann RJ, Borders R, Trouard TP et al (2004) Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6:831–837

    Article  PubMed  Google Scholar 

  27. Chenevert TL, Stegman LD, Taylor JM et al (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036

    Article  PubMed  CAS  Google Scholar 

  28. Mardor Y, Pfeffer R, Spiegelmann R et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100

    Article  PubMed  Google Scholar 

  29. Deng J, Miller FH, Rhee TK et al (2006) Diffusion-weighted MR imaging for determination of hepatocellular carcinoma response to yttrium-90 radioembolization. J Vasc Interv Radiol 17:1195–1200

    Article  PubMed  Google Scholar 

  30. Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast enhanced MR imaging. Radiology 228:271–278

    Article  PubMed  Google Scholar 

  31. Guo JY, Reddick WE (2009) DCE-MRI pixel-by-pixel quantitative curve pattern analysis and its application to osteosarcoma. J Magn Reson Imag 30:177–184

    Article  Google Scholar 

  32. Shin KH, Moon SH, Suh JS et al (2000) Tumor volume change as a predictor of chemotherapeutic response in osteosarcoma. Clin Orthop Relat Res 376:200–208

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sameer Bakhshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, J., Gamnagatti, S., Kumar, R. et al. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis. Pediatr Radiol 41, 441–450 (2011).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: