Skip to main content

Advertisement

Log in

Fetal evaluation of spine dysraphism

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Spinal dysraphism or neural tube defects (NTD) encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. Advances in ultrasound and MRI have dramatically improved the diagnosis and therapy of spinal dysraphism and caudal spinal anomalies both prenatally and postnatally. Advances in prenatal US including high frequency linear transducers and three dimensional imaging can provide detailed information concerning spinal anomalies. MR imaging is a complementary tool that can further elucidate spine abnormalities as well as associated central nervous system and non-CNS anomalies. Recent studies have suggested that 3-D CT can help further assess fetal spine anomalies in the third trimester. With the advent of fetal therapy including surgery, accurate prenatal diagnosis of open and closed spinal dysraphism becomes critical in appropriate counselling and perinatal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Naidich T et al (2002) Congenital anomalies of the spine and spinal cord-embryology and malformations. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 1527–1631

    Google Scholar 

  2. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  PubMed  Google Scholar 

  3. Barkovich A (2000) Congenital Anomalies of the Spine. In: Barkovich A (ed) Pediatric Neuroimaging, 3rd edn. Lippincott-Williams & Wilkins, Philadelphia, pp 621–683

    Google Scholar 

  4. Finnell RH, Gould A, Spiegelstein O (2003) Pathobiology and genetics of neural tube defects. Epilepsia 44(Suppl 3):14–23

    Article  CAS  PubMed  Google Scholar 

  5. Frey L, Hauser WA (2003) Epidemiology of neural tube defects. Epilepsia 44(Suppl 3):4–13

    Article  PubMed  Google Scholar 

  6. Cameron M, Moran P (2009) Prenatal screening and diagnosis of neural tube defects. Prenat Diagn 29:402–411

    Article  PubMed  Google Scholar 

  7. Coniglio SJ, Anderson SM, Ferguson JE 2nd (1996) Functional motor outcome in children with myelomeningocele: correlation with anatomic level on prenatal ultrasound. Dev Med Child Neurol 38:675–680

    Article  CAS  PubMed  Google Scholar 

  8. Mangels KJ, Tulipan N, Tsao LY et al (2000) Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg 32:124–131

    Article  CAS  PubMed  Google Scholar 

  9. Aaronson OS, Hernanz-Schulman M, Bruner JP et al (2003) Myelomeningocele: prenatal evaluation–comparison between transabdominal US and MR imaging. Radiology 227:839–843

    Article  PubMed  Google Scholar 

  10. Simon EM, Pollock A (2004) Prenatal and postnatal imaging of spinal dysraphism. Semin Roentgenol 39:182–195

    Article  PubMed  Google Scholar 

  11. Ruanon R, Molho M, Roume J et al (2004) Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computer tomography. Ultrasound Obstet Gynecol 24:134–140

    Article  Google Scholar 

  12. Cassart M, Massez A, Cos T et al (2007) Contribution of three-dimensional computed tomography in the assessment of fetal skeletal Dysplasia. Ultrasound Obstet Gynecol 29:537–543

    Article  CAS  PubMed  Google Scholar 

  13. Brunelle F, Sonigo P, Boddaert N et al (2008) MRI and fetal multidetector CT in the diagnosis of fetal malformations. Bull Acad Natl Med 192:1559–1573

    PubMed  Google Scholar 

  14. Blaas H, Eik-Nes SH (2009) Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn 29:312–325

    Article  PubMed  Google Scholar 

  15. Van den Hof MC, Nicolaides KH, Campbell J et al (1990) Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 162:322–327

    PubMed  Google Scholar 

  16. D’Addario V, Rossi AC, Pinto V et al (2008) Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinal Med 36:330–334

    Article  Google Scholar 

  17. Benacerraf B, Shipp T, Bromley B (2006) Three dimensional US of the fetus; volume imaging. Radiology 238:988–996

    Article  PubMed  Google Scholar 

  18. Tutschek B, Pilu G (2009) Virtual reality ultrasound imaging of the normal and abnormal fetal central nervous system. Ultrasound Obstet Gynecol 34:259–267

    Article  CAS  PubMed  Google Scholar 

  19. Budorick NE, Pretorius DH, Grafe MR et al (1991) Ossification of the fetal spine. Radiology 181:561–565

    CAS  PubMed  Google Scholar 

  20. Sepulveda W, Corral E, Ayala C et al (2004) Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol 23:352–356

    Article  CAS  PubMed  Google Scholar 

  21. Thompson D (2009) Postnatal management and outcome for neural tube defects including spina bifida and encephaloceles. Prenat Diagn 29:412–419

    Article  PubMed  Google Scholar 

  22. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    Article  CAS  PubMed  Google Scholar 

  23. Husler M, Danzer E, Johnson MP et al (2009) Prenatal diagnosis and postnatal outcome of fetal spinal defects without Arnold-Chiari II malformation. Prenat Diagn 29:1050–1057

    Article  PubMed  Google Scholar 

  24. Maiuri F, Corriero G, Giampaglia F et al (1986) Lateral thoracic meningocele. Surg Neurol 26:409–412

    Article  CAS  PubMed  Google Scholar 

  25. Steinbok P, Cochrane DD (1995) Cervical meningoceles and myelocystoceles: a unifying hypothesis. Pediatr Neurosurg 23:317–322

    Article  CAS  PubMed  Google Scholar 

  26. Pierre-Kahn A, Zerah M, Renier D et al (1997) Congenital lumbosacral lipomas. Childs Nerv Syst 13:298–334

    Article  CAS  PubMed  Google Scholar 

  27. Allen LM, Silverman RK (2000) Prenatal ultrasound evaluation of fetal diastematomyelia: two cases of type I split cord malformation. Ultrasound Obstet Gynecol 15:78–82

    Article  CAS  PubMed  Google Scholar 

  28. Hoffman CH, Dietrich RB, Pais MJ (1993) The split notochord syndrome with dorsal enteric fistula. AJNR 14:622–627

    CAS  PubMed  Google Scholar 

  29. Proctor MR, Bauer SB, Scott RM (2000) The effect of surgery for split spinal cord malformation on neurologic and urologic function. Pediatr Neurosurg 32:13–19

    Article  CAS  PubMed  Google Scholar 

  30. Midrio P, Silberstein HJ, Bilaniuk LT et al (2002) Prenatal diagnosis of terminal myelocystocele in the fetal surgery era: case report. Neurosurgery 50:1152–1154

    Article  PubMed  Google Scholar 

  31. Choi S, McComb JG (2000) Long-term outcome of terminal myelocystocele patients. Pediatr Neurosurg 32:86–91

    Article  CAS  PubMed  Google Scholar 

  32. Nievelstein RA, Valk J, Smit LM et al (1994) MR of the caudal regression syndrome: embryologic implications. AJNR 15:1021–1029

    CAS  PubMed  Google Scholar 

  33. Hirose S, Farmer DL (2009) Fetal surgery for myelomeningocele. Clin Perinatol 36:431–438

    Article  PubMed  Google Scholar 

  34. Meuli M, Meuli-Simmen C, Hutchins GM et al (1997) The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. J Pediatr Surg 22:448–452

    Article  Google Scholar 

  35. Paek BW, Farmer DL, Wilkinson CC et al (2000) Hindbrain herniation develops in surgically created myelomeningocele but is absent after repair in fetal lambs. Am J Obstet Gynecol 183:1119–1123

    Article  CAS  PubMed  Google Scholar 

  36. Rintoul NE, Sutton LN, Hubbard AM et al (2002) A new look at myelomeningoceles: functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics 109:409–413

    Article  PubMed  Google Scholar 

  37. Johnson MP, Sutton LN, Rintoul N et al (2003) Fetal myelomeningocele repair: short-term clinical outcomes. Am J Obstet Gynecol 189:482–487

    Article  PubMed  Google Scholar 

  38. Bruner JP, Tulipan N, Paschall RL (1999) Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA 282:1819–1825

    Article  CAS  PubMed  Google Scholar 

  39. Sutton LN, Adzick NS, Bilaniuk LT et al (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831

    Article  CAS  PubMed  Google Scholar 

  40. Tulipan N, Sutton LN, Bruner JP et al (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt-dependent hydrocephalus. Pediatr Neurosurg 38:27–33

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Bulas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulas, D. Fetal evaluation of spine dysraphism. Pediatr Radiol 40, 1029–1037 (2010). https://doi.org/10.1007/s00247-010-1583-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1583-0

Keywords

Navigation