Skip to main content
Log in

Functional analysis in MR urography — made simple

  • Technical Innovation
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

MR urography (MRU) has proved to be a most advantageous imaging modality of the urinary tract in children, providing one-stop comprehensive morphological and functional information, without the utilization of ionizing radiation. The functional analysis of the MRU scan still requires external post-processing using relatively complex software. This has proved to be a limiting factor in widespread routine implementation of MRU functional analysis and use of MRU functional parameters similar to nuclear medicine. We present software, developed in a pediatric radiology department, that not only enables comprehensive automated functional analysis, but is also very user-friendly, fast, easily operated by the average radiologist or MR technician and freely downloadable at www.chop-fmru.com. A copy of IDL Virtual Machine is required for the installation, which is obtained at no charge at www.ittvis.com. The analysis software, known as “CHOP-fMRU,” has the potential to help overcome the obstacles to widespread use of functional MRU in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Avni EF, Bali MA, Regnault M et al (2002) MR urography in children. Eur J Radiol 43:154–166

    Article  PubMed  Google Scholar 

  2. Grattan-Smith JD, Jones RA (2006) MR urography in children. Pediatr Radiol 36:1119–1132

    Article  PubMed  Google Scholar 

  3. Cerwinka WH, Grattan-Smith D, Kirsch AJ (2008) Magnetic resonance urography in pediatric urology. J Pediatr Urol 4:74–83

    Article  PubMed  Google Scholar 

  4. Vivier PH, Blondiaux E, Dolores M et al (2009) Functional MR urography in children. J Radiol 90:11–19 Available via http://www.univ-rouen.fr/med/MRurography/accueil.htm

    Google Scholar 

  5. Rohrschneider WK, Hoffend J, Becker K et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. I. Evaluation of normal status in an animal model. Pediatr Radiol 30:511–522

    Article  CAS  PubMed  Google Scholar 

  6. Rohrschneider WK, Becker K, Hoffend J et al (2000) Combined static-dynamic MR urography for the simultaneous evaluation of morphology and function in urinary tract obstruction. II. Findings in experimentally induced ureteric stenosis. Pediatr Radiol 30:523–532

    Article  CAS  PubMed  Google Scholar 

  7. Rohrschneider WK, Haufe S, Wiesel M et al (2002) Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 224:683–694

    Article  PubMed  Google Scholar 

  8. McDaniel B, Jones RA, Scherz H et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part 2, anatomic and functional assessment of ureteropelvic junction obstruction. AJR 185:1608–1614

    Article  PubMed  Google Scholar 

  9. Boss A, Schaefer JF, Martirosian P et al (2006) Contrast-enhanced dynamic MR nephrography using the TurboFLASH navigator-gating technique in children. Eur Radiol 16:1509–1518

    Article  PubMed  Google Scholar 

  10. Jones RA, Easley K, Little SB et al (2005) Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part I, functional assessment. AJR 185:1598–1607

    Article  PubMed  Google Scholar 

  11. Slovis TL (2008) Magnetic resonance urography (MRU) course introduction. Pediatr Radiol 38 (Suppl 1):S1-S2 (software distributed to participants of MR urography in children workshop by the Society of Pediatric Radiology, February 24–25, 2007, Orlando, FL)

  12. Merewitz L, Sunshine JH (2006) A portrait of pediatric radiologists in the United States. AJR 186:12–22

    Article  PubMed  Google Scholar 

  13. Grunz DJ, Bramson RT, Taylor GA (2006) Pediatric radiology. Radiology 238:1072–1073

    Article  PubMed  Google Scholar 

  14. van Rijn RR, Owens CM, Avni F et al (2006) The future of pediatric radiology: a European point of view. Radiology 238:1074

    Article  PubMed  Google Scholar 

  15. Grattan-Smith JD, Little SB, Jones RA (2008) MR urography in children: how we do it. Pediatr Radiol 38(Suppl 1):S3–S17

    Article  PubMed  Google Scholar 

  16. Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28:23–46

    Article  PubMed  Google Scholar 

  17. Grattan-Smith JD, Perez-Bayfield MR, Jones RA et al (2003) MR imaging of kidneys: functional evaluation using F-15 perfusion imaging. Pediatr Radiol 33:293–304

    PubMed  Google Scholar 

  18. Ergen FB, Hussain HK, Carlos RC et al (2007) 3D excretory MR urography: improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging 25:783–789

    Article  PubMed  Google Scholar 

  19. Jones RA, Schmotzer B, Little SB et al (2008) MRU post-processing. Pediatr Radiol 38(Suppl 1):S18–S27

    Article  PubMed  Google Scholar 

  20. Kalb B, Votaw JR, Salman K et al (2008) Magnetic resonance nephrourography: current and developing techniques. Radiol Clin N Am 46:11–24

    Article  PubMed  Google Scholar 

  21. Grenier N, Mendichovszky I, de Senneville BD et al (2008) Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38:47–55

    Article  PubMed  Google Scholar 

  22. Mendichovszky I, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576--581

    Article  CAS  PubMed  Google Scholar 

  23. Grattan-Smith JD, Little SB, Jones RA (2008) MR urography evaluation of obstructive uropathy. Pediatr Radiol 38(Suppl 1):S49–S69

    Article  PubMed  Google Scholar 

  24. Jones RA, Perez-Brayfield MR, Kirsch AJ et al (2004) Renal transit time with MR urography in children. Radiology 233:41–50

    Article  PubMed  Google Scholar 

  25. Mendichovszky I, Pedersen M, Frokiaer J et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931

    Article  PubMed  Google Scholar 

  26. Rutland MD (1979) A single-injection technique for subtraction of blood background in 1311-hippuran renograms. Br J Radiol 52:134–137

    Article  CAS  PubMed  Google Scholar 

  27. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    CAS  PubMed  Google Scholar 

  28. Peters AM (1994) Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun 15:669–672

    Article  CAS  PubMed  Google Scholar 

  29. Hackstein N, Kooijman H, Tomaselli S et al (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging 22:406–414

    Article  PubMed  Google Scholar 

  30. Sharkey I, Boddy AV, Wallace H et al (2001) Body surface area estimation in children using weight alone: application in paediatric oncology. Br J Cancer 85:23–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Introducing a new imaging modality in a department and developing software for functional analysis requires the support and input of many people. We would like to express our deepest thanks to the following persons in the Department of Radiology: C. Harris, BSc, for continued professional support in optimizing the MRU procedure, and Drs. R. Bellah, M. Epelman, A. Johnson and T. Roberts for their constructive feedback. Our thanks also goes to Dr. D. Jaramillo for his unrelenting support.

The MR imaging innovation would not have been possible without the interest of and close collaboration with our clinical partners from the Division of Urology at the Children’s Hospital in Philadelphia, particularly with Dr. P. Casale. Many thanks to all our pediatric urologists for their inquisitiveness and helpful criticism and suggestions, which facilitated shaping and improving the quality of the CHOP-fMRU software during the last 2 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Khrichenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.5 mb)

ESM 2

(MPG 672 kb)

(MPG 468 kb)

ESM 4

(MPG 640 kb)

ESM 5

(MPG 436 kb)

ESM 6

(MPG 1.2 mb)

ESM 7

(MPG 232 kb)

ESM 8

(MPG 1.3 mb)

(MPG 560 kb)

ESM 10

(MPG 194 kb)

(MPG 532 kb)

ESM 12

(MPG 1.3 mb)

ESM 13

(PDF 421 kb)

ESM 14

(PDF 19.2 kb)

ESM 15

(PDF 21.9 kb)

ESM 16

(PDF 59 kb)

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrichenko, D., Darge, K. Functional analysis in MR urography — made simple. Pediatr Radiol 40, 182–199 (2010). https://doi.org/10.1007/s00247-009-1458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-009-1458-4

Keywords

Navigation