Pediatric Radiology

, 38:1054 | Cite as

Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature

  • Alireza RadmaneshEmail author
  • Talieh Zaman
  • Hossein Ghanaati
  • Sanaz Molaei
  • Richard L. Robertson
  • Amir A. Zamani
Original Article



Methylmalonic acidemia (MMA) is an autosomal-recessive inborn error of metabolism.


To recognize the CT and MR brain sectional imaging findings in children with MMA.

Materials and methods

Brain imaging studies (47 MR and 5 CT studies) from 52 children were reviewed and reported by a neuroradiologist. The clinical data were collected for each patient.


The most common findings were ventricular dilation (17 studies), cortical atrophy (15), periventricular white matter abnormality (12), thinning of the corpus callosum (8), subcortical white matter abnormality (6), cerebellar atrophy (4), basal ganglionic calcification (3), and myelination delay (3). The brain images in 14 patients were normal.


Radiological findings of MMA are nonspecific. A constellation of common clinical and radiological findings should raise the suspicion of MMA.


Methylmalonic acid Inborn error of metabolism CT MRI Children 


  1. 1.
    Matsui SM, Mahoney MJ, Rosenberg LE (1983) The natural history of the inherited methylmalonic acidemias. N Engl J Med 308:857–861PubMedGoogle Scholar
  2. 2.
    Coulombe JT, Shih VE, Levy HL (1981) Massachusetts metabolic disorders screening program. II. Methylmalonic aciduria. Pediatrics 67:26–31PubMedGoogle Scholar
  3. 3.
    Mahoney MJ, Bick D (1987) Recent advances in the inherited methylmalonic acidemias. Acta Paediatr Scand 76:689–696PubMedCrossRefGoogle Scholar
  4. 4.
    Saudubray JM, Ogier H, Bonnefont JP et al (1989) Clinical approach to inherited metabolic diseases in the neonatal period: a 20-year survey. J Inherit Metab Dis 12 [Suppl 1]:25–41PubMedCrossRefGoogle Scholar
  5. 5.
    Scriver CR, Beaudet AL, Valle S (eds) (2001) The metabolic and molecular basis of inherited diseases. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Naidu S, Moser HW (1991) Value of neuroimaging in metabolic diseases affecting the CNS. AJNR 12:413–416PubMedGoogle Scholar
  7. 7.
    Yue NC, Arnold AM, Longstreth WT et al (1997) Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the cardiovascular health study. Radiology 202:33–39PubMedGoogle Scholar
  8. 8.
    Kanaumi T, Takashima S, Hirose S et al (2006) Neuropathology of methylmalonic acidemia in a child. Pediatr Neurol 34:156–159PubMedCrossRefGoogle Scholar
  9. 9.
    Brismar J, Ozand PT (1994) CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR 15:1459–1473PubMedGoogle Scholar
  10. 10.
    Biancheri R, Cerone R, Schiaffino MC et al (2001) Cobalamin (Cbl) C/D deficiency: clinical, neurophysiological and neuroradiologic findings in 14 cases. Neuropediatrics 32:14–22PubMedCrossRefGoogle Scholar
  11. 11.
    Lachman RS (2007) Taybi and Lachman’s radiology of syndromes, metabolic disorders, and skeletal dysplagias. 5th edn. Mosby-Elsevier, Philadelphia, p 507Google Scholar
  12. 12.
    Enns GM, Barkovich AJ, Rosenblatt DS et al (1999) Progressive neurological deterioration and MRI changes in cblC methylmalonic acidaemia treated with hydroxocobalamin. J Inherit Metab Dis 22:599–607PubMedCrossRefGoogle Scholar
  13. 13.
    Barkovich AJ (2000) Pediatric neuroimaging. Williams and Wilkins, Baltimore, pp 138–139Google Scholar
  14. 14.
    Rutherford M (2002) MRI of the neonatal brain. Saunders, Philadelphia, PAGoogle Scholar
  15. 15.
    Jin H, Zou LP, Zhang CH et al (2004) Diagnosis and treatment of methylmalonic acidemia in 14 cases. Zhonghua Er Ke Za Zhi 42:581–584PubMedGoogle Scholar
  16. 16.
    Gebarski SS, Gabrielsen TO, Knake JE et al (1983) Cerebral CT findings in methylmalonic acid propionic acidemias. AJNR 4:955–957PubMedGoogle Scholar
  17. 17.
    Heidenreich R, Natowicz M, Hainline BE et al (1988) Acute extrapyramidal syndrome in methylmalonic acidemia: “metabolic stroke” involving the globus pallidus. J Pediatr 113:1022–1027PubMedCrossRefGoogle Scholar
  18. 18.
    de Sousa C, Piesowicz AT, Brett EM et al (1989) Focal changes in the globi pallidi associated with neurological dysfunction in methylmalonic acidaemia. Neuropediatrics 20:199–201PubMedCrossRefGoogle Scholar
  19. 19.
    Korf B, Wallman JK, Levy HL (1986) Bilateral lucency of the globus pallidus complicating methylmalonic acidemia. Ann Neurol 20:364–366PubMedCrossRefGoogle Scholar
  20. 20.
    Yesildag A, Ayata A, Baykal B et al (2005) Magnetic resonance imaging and diffusion-weighted imaging in methylmalonic acidemia. Acta Radiol 46:101–103PubMedCrossRefGoogle Scholar
  21. 21.
    Trinh BC, Melhem ER, Barker PB (2001) Multi-slice proton MR spectroscopy and diffusion-weighted imaging in methylmalonic acidemia: report of two cases and review of the literature. AJNR 22:831–833PubMedGoogle Scholar
  22. 22.
    Rosenberg NL (1987) Methylmalonic acid, methanol, metabolic acidosis and lesions of the basal ganglia. Ann Neurol 22:96–97PubMedCrossRefGoogle Scholar
  23. 23.
    Shimoizumi H, Okabe I, Kodama H et al (1993) Methylmalonic acidemia with bilateral MRI high intensities of the globus pallidus. No To Hattatsu 25:554–557PubMedGoogle Scholar
  24. 24.
    Roodhooft AM, Baumgartner ER, Martin JJ et al (1990) Symmetrical necrosis of the basal ganglia in methylmalonic acidaemia. Eur J Pediatr 149:582–584PubMedCrossRefGoogle Scholar
  25. 25.
    Barkovich AJ (1995) Pediatric neuroradiology. Raven Press, New York, pp 463–465Google Scholar
  26. 26.
    Rossi A, Cerone R, Biancheri R et al (2001) Early-onset combined methylmalonic aciduria and homocystinuria: neuroradiologic findings. AJNR 22:554–563PubMedGoogle Scholar
  27. 27.
    Dave P, Curless RG, Steinman L (1984) Cerebellar hemorrhage complicating methylmalonic and propionic acidemia. Arch Neurol 41:1293–1296PubMedGoogle Scholar
  28. 28.
    Fischer AQ, Challa VR, Burton BK et al (1981) Cerebellar hemorrhage complicating isovaleric academia: a case report. Neurology 31:746–748PubMedGoogle Scholar
  29. 29.
    Barkovich AJ, Ali F, Rowley HA et al (1998) Imaging patterns of neonatal hypoglycemia. AJNR 19:523–528PubMedGoogle Scholar
  30. 30.
    Lyon G, Kolodny EH, Pastores GM (2006) Neurology of hereditary metabolic diseases of children. McGraw-Hill, New YorkGoogle Scholar
  31. 31.
    Takeuchi M, Harada M, Matsuzaki K et al (2003) Magnetic resonance imaging and spectroscopy in a patient with treated methylmalonic acidemia. J Comput Assist Tomogr 27:547–551PubMedCrossRefGoogle Scholar
  32. 32.
    Michel SJ, Given CA 2nd, Robertson WC Jr (2004) Imaging of the brain, including diffusion-weighted imaging in methylmalonic acidemia. Pediatr Radiol 34:580–582PubMedCrossRefGoogle Scholar
  33. 33.
    Andruela CF, De Blasi R, Carella A (1991) CT and MR studies of methylmalonic acidemia. AJNR 12:410–412Google Scholar
  34. 34.
    Gropman AL (2005) Expanding the diagnostic and research toolbox for inborn errors of metabolism: the role of magnetic resonance spectroscopy. Mol Genet Metab 86:2–9PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alireza Radmanesh
    • 1
    Email author
  • Talieh Zaman
    • 2
  • Hossein Ghanaati
    • 3
  • Sanaz Molaei
    • 4
  • Richard L. Robertson
    • 5
  • Amir A. Zamani
    • 6
  1. 1.Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Pediatric Metabolic DisordersTehran University of Medical SciencesTehranIran
  3. 3.Department of RadiologyTehran University of Medical SciencesTehranIran
  4. 4.Department of RadiologyShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Department of RadiologyChildren’s Hospital BostonBostonUSA
  6. 6.Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations