Abstract
Wilms tumour is a great therapeutic success story within paediatric oncology; its prognosis is excellent. Although mainly sporadic, occurring in otherwise well children, it occurs in a small number of genetically predisposed children. Thus regular surveillance imaging is performed in predisposed children in parts of the USA and Europe. The risks and benefits of surveillance are unclear, as the existing ad-hoc surveillance protocols are lacking in consistency of practice and equity of provision. We present guidelines for Wilms tumour surveillance based on a review of current practice and available evidence, outlined by a multidisciplinary working group in the UK. Wilms tumours are bilateral in 4–13% of affected children. Bilateral synchronous nephroblastomas are observed in 5% of affected children and are usually associated with the presence of nephrogenic rests, congenital malformations and predisposing syndromes. The major challenge in bilateral disease is to achieve a cure and at the same time to preserve sufficient functional renal tissue for normal growth and development. The association among Wilms tumour, nephrogenic rests and nephroblastomatosis makes detection and characterization of renal lesions with imaging extremely important. We discuss the relative strengths and weaknesses of the different modalities used for diagnosis and follow-up in bilateral renal disease. We also discuss newly emerging diagnostic imaging tests such as 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). This technique, when fused with CT (PET-CT), allows accelerated metabolic activity to be accurately anatomically localised and so is potentially useful for staging, assessment of treatment response, and for surgical and radiotherapy planning. In addition, quantitative MRI techniques have been proved to be valuable in intracranial tumours, but no such role has been validated in abdominal disease. Diffusion-weighted imaging with calculation of ADC maps is feasible in abdominal tumours, and our own preliminary data suggest that tissue cellularity is an important determinant of ADC value, which might help in terms of early prediction of therapy response.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Scott RH, Walker L, Olsen OE et al (2006) Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child 91:995–999
Pritchard-Jones K (2002) Controversies and advances in management of Wilms tumour. Arch Dis Child 87:241–244
Pein F, Sakiroglu O, Dahan M et al (2004) Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour a the Institut Gustave Roussy. Br J Cancer 91:37–44
Oeffinger KC, Hudson MM (2004) Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J Clin 54:208–236
Prorok PC (1992) Epidemiologic approach for cancer screening. Problems in design and analysis of trials. Am J Pediatr Hematol Oncol 14:117–128
Green DM, Breslow NE, Beckwith JB et al (1993) Screening of children with hemihypertrophy, aniridia and Beckwith-Wiedemann syndrome in patients with Wilms tumour: a report from the National Wilms Tumour Study. Med Pediatr Oncol 12:188–192
Craft AW, Parker L, Stiller C et al (1995) Screening for Wilms tumour in patients with aniridia, Beckwith syndrome or hemihypertrophy. Med Pediatr Oncol 24:231–234
Choyke PL, Siegel MJ, Craft A et al (1999) Screening for Wilms tumour in children with Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 32:196–200
DeBaun MR, Brown M, Kessler L (1996) Screening for Wilms tumour in children with high-risk congenital syndromes: considerations for an intervention trial. Med Pediatr Oncol 27:415–421
Schmidt T, Hohl C, Haage P et al (2003) Diagnostic accuracy of phase-inversion tissue harmonic imaging versus fundamental B-mode sonography in the evaluation of focal lesions of the kidney. AJR 180:1639–1647
Petruzzi MJ, Green DM (1997) Wilms tumour. Pediatr Clin North Am 44:939–952
Grundy PE, Green DM, Coppes MJ et al (2002) Renal tumours. In: Pizzo PA, Poplack DG (eds) Principles and practice of paediatric oncology. Lippincott Williams and Wilkins, Philadelphia, pp 865–893
Coppes MJ, Arnold M, Beckwith JB et al (1999) Factors affecting the risk of contralateral Wilms tumour development: a report from the National Wilms Tumour Study Group. Cancer 85:1616–1625
Merchant SA, Badhe PB (1995) Nephroblastomatosis – pathologic and imaging characteristics. J Postgrad Med 41:72–80
Coppes MJ, de Kraker J, van Dijken PJ et al (1989) Bilateral Wilms tumour: long-term survival and some epidemiological features. J Clin Oncol 7:310–315
Horwitz JR, Ritchey ML, Moksness J et al (1996) Renal salvage procedures in patients with synchronous bilateral Wilms tumours: a report from the National Wilms Tumour Study Group. J Pediatr Surg 31:1020–1025
Beckwith JB (1998) Nephrogenic rests and the pathogenesis of Wilms tumour: developmental and clinical considerations. Am J Med Genet 79:268–273
Lonergan GJ, Martinez-Leon MI, Agrons GA et al (1998) Nephrogenic rests, nephroblastomatosis and associated lesions of the kidney. Radiographics 18:947–968
Perlman E, Dijoud F, Boccon-Gibod L (2004) Nephrogenic rests and nephroblastomatosis. Ann Pathol 24:510–515
Rohrschneider WK, Weirich A, Rieden K et al (1998) US, CT and MR imaging characteristics of nephroblastomatosis. Pediatr Radiol 28:435–443
Gylys-Morin V, Hoffer FA, Kozakewich H et al (1993) Wilms tumour and nephroblastomatosis: imaging characteristics at gadolinium-enhanced MR imaging. Radiology 188:517–521
Subhas N, Argani P, Gearhart JP et al (2004) Nephrogenic rests mimicking Wilms tumour on CT. Pediatr Radiol 34:152–155
Choyke PL, Siegel MJ, Oz O et al (1998) Nonmalignant renal disease in paediatric patients with Beckwith-Wiedemann syndrome. AJR 171:733–737
Hoffer FA (2005) Magnetic resonance imaging of abdominal masses in the paediatric patient. Semin Ultrasound CT MR 26:212–223
Berenyi P, Pinter J, Szokoly V (1990) Intraoperative sonography in organ preserving operations of kidney tumours. Z Urol Nephrol 83:419–424
Olsen OE, Sebire NJ (2006) Apparent diffusion coefficient maps of paediatric mass lesions with free-breathing diffusion-weighted magnetic resonance: feasibility study. Acta Radiol 47:198–204
Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 177:229–236
Shulkin BL, Chang E, Strouse PJ et al (1997) PET FDG studies of Wilms tumours. J Pediatr Hematol Oncol 9:334–338
Wegner EA, Barrington SF, Kingston JE et al (2005) The impact of PET scanning on management of paediatric oncology patients. Eur J Nucl Med Mol Imaging 32:23–30
Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology DOI 2452061535
Tamai H, Takiguchi Y, Oka M et al (2005) Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med 24:1635–1640
Acenti G, Mazziotti S, Zimbaro G et al (2007) Complex cystic renal masses: characterization with contrast-enhanced US. Radiology 243:158–165
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
Appendix 2
The Wilms Tumour Surveillance Working Group
Prof. Nazneen Rahman (Chair)
Professor of Childhood Cancer Genetics and Honorary Consultant in Medical Genetics, Institute of Cancer Research, Sutton
Prof. Sir Alan Craft
Consultant Paediatrician, Royal Victoria Infirmary, Newcastle Upon Tyne
Dr. Ian Kenney
Consultant Radiologist, Royal Alexandra Hospital for Sick Children, Brighton
Dr. Gill Levitt
Consultant in Oncology and Late Effects, Great Ormond Street Hospital for Children NHS Trust, London
Prof. Eamonn Maher
Professor and Honorary Consultant in Medical Genetics, Birmingham Women’s Hospital, Birmingham
Dr. Øystein E. Olsen
Consultant Radiologist, Great Ormond Street Hospital for Children NHS Trust, London
Dr. Catherine M. Owens
Director of Radiology, Great Ormond Street Hospital for Children NHS Trust, London
Prof. Kathryn Pritchard-Jones
Professor of Childhood Cancer Biology and Honorary Consultant in Paediatric Oncology, Royal Marsden Hospital and Institute of Cancer Research, Sutton
Dr. Lisa Walker
Specialist Registrar in Clinical Genetics, Addenbrookes Hospital, Cambridge
Rights and permissions
About this article
Cite this article
Owens, C.M., Brisse, H.J., Olsen, Ø.E. et al. Bilateral disease and new trends in Wilms tumour. Pediatr Radiol 38, 30–39 (2008). https://doi.org/10.1007/s00247-007-0681-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00247-007-0681-0