Skip to main content
Log in

Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background: Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. Objective: To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Materials and methods: Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Results: Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Conclusions: Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thornberg E, Thiringer K, Odeback A, et al (1995) Birth asphyxia: incidence, clinical course and outcome in a Swedish population. Acta Paediatr 84:927–932

    CAS  PubMed  Google Scholar 

  2. Wayenberg JL, Vermeylen D, Damis E (1998) Définition de l’asphyxie à la naissance et incidence des complications neurologiques et systémiques chez le nouveau-né à terme. Arch Pediatr 5:1065–1071

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez de Dios J, Moya M (1996) Perinatal asphyxia, hypoxic-ischemic encephalopathy and neurological sequelae in full-term newborns: an epidemiological study. Rev Neurol 24:812–819

    CAS  PubMed  Google Scholar 

  4. Forbes KP, Pipe JG, Bird R (2000) Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging. AJNR 21:1490–1496

    CAS  PubMed  Google Scholar 

  5. Liu AY, Zimmerman RA, Haselgrove JC, et al (2001) Diffusion-weighted imaging in the evaluation of watershed hypoxic-ischemic brain injury in pediatric patients. Neuroradiology 43:918–926

    Article  CAS  PubMed  Google Scholar 

  6. Takeoka M, Soman TB, Yoshii A, et al (2002) Diffusion-weighted images in neonatal cerebral hypoxic-ischemic injury. Pediatr Neurol 26:274–281

    Article  PubMed  Google Scholar 

  7. Roelants-Van Rijn AM, Nikkels PG, Groenendaal F, et al (2001) Neonatal diffusion-weighted MR imaging: relation with histopathology or follow-up MR examination. Neuropediatrics 32:286–294

    Article  CAS  PubMed  Google Scholar 

  8. Kadri M, Shu S, Holshouser B, et al (2003) Proton magnetic resonance spectroscopy improves outcome prediction in perinatal CNS insults. J Perinatol 23:181–185

    Article  CAS  PubMed  Google Scholar 

  9. Zarifi MK, Astrakas LG, Poussaint TY, et al (2002) Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 225:859–870

    CAS  PubMed  Google Scholar 

  10. Tzika AA, Vajapeyam S, Barnes PD (1997) Multivoxel proton MR spectroscopy and hemodynamic MR imaging of childhood brain tumors: preliminary observations. AJNR 18:203–218

    CAS  PubMed  Google Scholar 

  11. Amiel-Tison C, Ellison P (1986) Birth asphyxia in the fullterm newborn: early assessment and outcome. Dev Med Child Neurol 28:671–682

    CAS  PubMed  Google Scholar 

  12. Wolf RL, Zimmerman RA, Clancy R, et al (2001) Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology 218:825–833

    CAS  PubMed  Google Scholar 

  13. Gire C, Nicaise C, Roussel M, et al (2000) Hypoxic-ischemic encephalopathy in the full-term newborn. Contribution of electroencephalography and MRI or computed tomography to its prognostic evaluation. A propos of 26 cases. Neurophysiol Clin 30:97–107

    CAS  PubMed  Google Scholar 

  14. Pressler RM, Boylan GB, Morton M, et al (2001) Early serial EEG in hypoxic ischaemic encephalopathy. Clin Neurophysiol 112:31–37

    Article  CAS  PubMed  Google Scholar 

  15. Barkovich AJ, Hajnal BL, Vigneron D, et al (1998) Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR 19:143–149

    CAS  PubMed  Google Scholar 

  16. Robertson NJ, Kuint J, Counsell TJ, et al (2000) Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 20:1446–1456

    Article  CAS  PubMed  Google Scholar 

  17. Majos C, Alonso J, Aguilera C, et al (2003) Proton magnetic resonance spectroscopy ((1) H MRS) of human brain tumours: assessment of differences between tumour types and its applicability in brain tumour categorization. Eur Radiol 13:582–591

    PubMed  Google Scholar 

  18. Fan G, Wu Z, Chen L, et al (2003) Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging. Eur J Radiol 45:91–98

    Article  PubMed  Google Scholar 

  19. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy. Following foetal distress. A clinical and electroencephalography study. Arch Neurol 33:696–705

    CAS  PubMed  Google Scholar 

  20. Barkovich AJ, Baranski K, Vigneron D, et al (1999) Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR 20:1399–1405

    CAS  PubMed  Google Scholar 

  21. Baik HM, Choe BY, Son BC, et al (2003) Feasibility of proton chemical shift imaging with a stereotactic headframe. Magn Reson Imaging 21:55–59

    Article  PubMed  Google Scholar 

  22. Harada M, Uno M, Hong F, et al (2002) Diffusion-weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor. NMR Biomed 15:69–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Brissaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brissaud, O., Chateil, JF., Bordessoules, M. et al. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates. Pediatr Radiol 35, 998–1005 (2005). https://doi.org/10.1007/s00247-005-1524-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-005-1524-5

Keywords

Navigation