Skip to main content

Advertisement

Log in

Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951

    Article  PubMed  Google Scholar 

  2. Cystic Fibrosis Foundation Patient Registry (2004) 2003 Annual data report to the center directors. Cystic Fibrosis Foundation, Bethesda

  3. Cohn JA, Friedman KJ, Noone PG, et al (1998) Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339:653–658

    Article  CAS  PubMed  Google Scholar 

  4. Sharer N, Schwarz M, Malone G, et al (1998) Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652

    Article  CAS  PubMed  Google Scholar 

  5. Chillon M, Casals T, Mercier B, et al (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 332:1475–1480

    Article  CAS  PubMed  Google Scholar 

  6. Bombieri C, Benetazzo M, Saccomani A, et al (1998) Complete mutational screening of the CFTR gene in 120 patients with pulmonary disease. Hum Genet 103:718–722

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Moylan B, Leopold DA, et al (2000) Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA 284:1814–1819

    Article  CAS  PubMed  Google Scholar 

  8. Moskowitz SM, Gibson RL, Sternen DL, et al (2004) CFTR-related disorders. In: GeneReviews at GeneTests: medical genetics information resource (online database). Available at http://www.genetests.org. Cited 18 July 2004

  9. Kerem BS, Rommens JM, Buchanan JA, et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    CAS  PubMed  Google Scholar 

  10. Rommens JM, Iannuzzi MC, Kerem BS, et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    CAS  PubMed  Google Scholar 

  11. Riordan JR, Rommens JM, Kerem BS, et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  12. Kulich M, Rosenfeld M, Goss CH, et al (2003) Improved survival among young patients with cystic fibrosis. J Pediatr 142:631636

    Google Scholar 

  13. Tsui LC, Zielenski J (2004) Cystic fibrosis mutation database. Hospital for Sick Children (Toronto, Canada). Available at http://www.genet.sickkids.on.ca/cftr/. Cited 18 July 2004

  14. Wang X, Myers A, Saiki RK, et al (2002) Development and evaluation of a PCR-based, line probe assay for the detection of 58 alleles in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Clin Chem 48:1121–1123

    CAS  PubMed  Google Scholar 

  15. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254

    Article  CAS  PubMed  Google Scholar 

  16. McKone EF, Emerson SS, Edwards KL, et al (2003) Effect of genotype on phenotype and mortality in cystic fibrosis: a retrospective cohort study. Lancet 361:1671–1676

    Article  CAS  PubMed  Google Scholar 

  17. Mak V, Zielenski J, Tsui LC, et al (1999) Proportion of cystic fibrosis gene mutations not detected by routine testing in men with obstructive azoospermia. JAMA 281:2217–2224

    Article  CAS  PubMed  Google Scholar 

  18. Kiesewetter S, Macek M Jr, Davis C, et al (1993) A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 5:274–278

    Article  CAS  PubMed  Google Scholar 

  19. Friedman KJ, Heim RA, Knowles MR, et al (1997) Rapid characterization of the variable length polythymidine tract in the cystic fibrosis (CFTR) gene: association of the 5T allele with selected CFTR mutations and its incidence in atypical sinopulmonary disease. Hum Mutat 10:108–115

    Article  CAS  PubMed  Google Scholar 

  20. Dork T, Dworniczak B, Aulehla-Scholz C, et al (1997) Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet 100:365–377

    Article  CAS  PubMed  Google Scholar 

  21. Cuppens H, Lin W, Jaspers M, et al (1998) Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation. J Clin Invest 101:487–496

    CAS  PubMed  Google Scholar 

  22. Groman JD, Hefferon TW, Casals T, et al (2004) Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 74:176–179

    Article  CAS  PubMed  Google Scholar 

  23. Noone PG, Pue CA, Zhou Z, et al (2000) Lung disease associated with the IVS8 5T allele of the CFTR gene. Am J Respir Crit Care Med 162:1919–1924

    CAS  PubMed  Google Scholar 

  24. Brock DJ, Gilfillan A, Holloway S (1998) The incidence of cystic fibrosis in Scotland calculated from heterozygote frequencies. Clin Genet 53:47–49

    Article  CAS  PubMed  Google Scholar 

  25. Witt DR, Schaefer C, Hallam P, et al (1996) Cystic fibrosis heterozygote screening in 5,161 pregnant women. Am J Hum Genet 58:823–835

    CAS  PubMed  Google Scholar 

  26. Rubin BK (1990) Exposure of children with cystic fibrosis to environmental tobacco smoke. N Engl J Med 323:782–788

    CAS  PubMed  Google Scholar 

  27. Campbell PW 3rd, Parker RA, Roberts BT, et al (1992) Association of poor clinical status and heavy exposure to tobacco smoke in patients with cystic fibrosis who are homozygous for the F508 deletion. J Pediatr 120:261–264

    PubMed  Google Scholar 

  28. Kovesi T, Corey M, Levison H (1993) Passive smoking and lung function in cystic fibrosis. Am Rev Respir Dis 148:1266–1271

    CAS  PubMed  Google Scholar 

  29. Drumm ML (2001) Modifier genes and variation in cystic fibrosis. Respir Res 2:125–128

    Article  CAS  PubMed  Google Scholar 

  30. Frangolias DD, Ruan J, Wilcox PJ, et al (2003) Alpha 1-antitrypsin deficiency alleles in cystic fibrosis lung disease. Am J Respir Cell Mol Biol 29:390–396

    Article  CAS  PubMed  Google Scholar 

  31. Grasemann H, vans Gravesande KS, Buscher R, et al (2003) Endothelial nitric oxide synthase variants in cystic fibrosis lung disease. Am J Respir Crit Care Med 167:390–394

    Article  PubMed  Google Scholar 

  32. Garred P, Pressler T, Madsen HO, et al (1999) Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest 104:431–437

    CAS  PubMed  Google Scholar 

  33. Hull J, Thomson AH (1998) Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax 53:1018–1021

    CAS  PubMed  Google Scholar 

  34. Drumm ML, Konstan MW, Goddard K, et al (2004) A candidate gene screen for modifiers of CF lung disease. Am J Respir Crit Care Med 169:A582

    Google Scholar 

  35. Lim M, Zeitlin PL (2001) Therapeutic strategies to correct malfunction of CFTR. Paediatr Respir Rev 2:159–164

    Article  CAS  PubMed  Google Scholar 

  36. Clancy JP, Bebok Z, Ruiz F, et al (2001) Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 163:1683–1692

    CAS  PubMed  Google Scholar 

  37. Wilschanski M, Yahav Y, Yaacov Y, et al (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 349:1433–1441

    Article  CAS  PubMed  Google Scholar 

  38. Wilschanski M, Famini C, Blau H, et al (2000) A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 161:860–865

    CAS  PubMed  Google Scholar 

  39. Zeitlin PL, Diener-West M, Rubenstein RC, et al (2002) Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 6:119–126

    Article  CAS  PubMed  Google Scholar 

  40. Lim M, McKenzie K, Floyd AD, et al (2004) Modulation of DeltaF508 CFTR trafficking and function with 4-PBA and flavonoids. Am J Respir Cell Mol Biol 31:351–357

    Article  CAS  PubMed  Google Scholar 

  41. Zar H, Saiman L, Quittell L, et al (1995) Binding of Pseudomonas aeruginosa to respiratory epithelial cells from patients with various mutations in the cystic fibrosis transmembrane regulator. J Pediatr 126:230–233

    CAS  PubMed  Google Scholar 

  42. Tirouvanziam R, de Bentzmann S, Hubeau C, et al (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23:121–127

    CAS  PubMed  Google Scholar 

  43. Smith JJ, Travis SM, Greenberg EP, et al (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    Article  CAS  PubMed  Google Scholar 

  44. Cole AM, Ganz T (2002) Antimicrobial peptides and proteins in the CF airway. Methods Mol Med 70:447–464

    CAS  PubMed  Google Scholar 

  45. Matsui H, Grubb BR, Tarran R, et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–1015

    Article  CAS  PubMed  Google Scholar 

  46. Worlitzsch D, Tarran R, Ulrich M, et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    Article  CAS  PubMed  Google Scholar 

  47. Mall M, Grubb BR, Harkema JR, et al (2004) Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10:487–493

    Article  CAS  PubMed  Google Scholar 

  48. Khan TZ, Wagener JS, Bost T, et al (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    CAS  PubMed  Google Scholar 

  49. LiPuma JJ, Spilker T, Gill LH, et al (2001) Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96

    CAS  PubMed  Google Scholar 

  50. Chen JS, Witzmann KA, Spilker T, et al (2001) Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr 139:643–649

    Article  CAS  PubMed  Google Scholar 

  51. LiPuma JJ, Spilker T, Coenye T, et al (2002) An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359:2002–2003

    Article  PubMed  Google Scholar 

  52. Mahenthiralingam E, Vandamme P, Campbell ME, et al (2001) Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 33:1469–1475

    Article  CAS  PubMed  Google Scholar 

  53. Manno G, Dalmastri C, Tabacchioni S, et al (2004) Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. J Clin Microbiol 42:1491–1497

    Article  PubMed  Google Scholar 

  54. Olivier KN, Weber DJ, Wallace RJ Jr, et al (2003) Nontuberculous mycobacteria I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 167:828–834

    Article  PubMed  Google Scholar 

  55. Olivier KN, Weber DJ, Lee JH, et al (2003) Nontuberculous mycobacteria. II. Nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 167:835–840

    Article  PubMed  Google Scholar 

  56. Yoon SS, Hennigan RF, Hilliard GM, et al (2002) Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603

    Article  CAS  PubMed  Google Scholar 

  57. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  58. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  CAS  PubMed  Google Scholar 

  59. Prince AS (2002) Biofilms, antimicrobial resistance, and airway infection. N Engl J Med 347:1110–1111

    Article  PubMed  Google Scholar 

  60. Hoiby N, Krogh Johansen H, Moser C, et al (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35

    Article  CAS  PubMed  Google Scholar 

  61. Mah TF, Pitts B, Pellock B, et al (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  62. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  63. Bagge N, Hentzer M, Andersen JB, et al (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48:1168–1174

    Article  CAS  PubMed  Google Scholar 

  64. Jensen ET, Kharazmi A, Garred P, et al (1993) Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 15:377–388

    Article  CAS  PubMed  Google Scholar 

  65. Meluleni GJ, Grout M, Evans DJ, et al (1995) Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 155:2029–2038

    CAS  PubMed  Google Scholar 

  66. Singh PK, Schaefer AL, Parsek MR, et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764

    Article  CAS  PubMed  Google Scholar 

  67. VanDevanter DR, Van Dalfsen JM (2005) How much do Pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? Pediatr Pulmonol (in press)

  68. Ordonez CL, Henig NR, Mayer-Hamblett N, et al (2003) Inflammatory and microbiologic markers in induced sputum after intravenous antibiotics in cystic fibrosis. Am J Respir Crit Care Med 168:1471–1475

    Article  PubMed  Google Scholar 

  69. Smith AL, Doershuk C, Goldmann D, et al (1999) Comparison of a beta-lactam alone versus beta-lactam and an aminoglycoside for pulmonary exacerbation in cystic fibrosis. J Pediatr 134:413–421

    CAS  PubMed  Google Scholar 

  70. Rosenfeld M, Emerson J, Williams-Warren J, et al (2001) Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr 139:359–365

    Article  CAS  PubMed  Google Scholar 

  71. Chan C, Burrows LL, Deber CM (2004) Helix induction in antimicrobial peptides by alginate in biofilms. J Biol Chem 279:38749–38754

    Article  CAS  PubMed  Google Scholar 

  72. Nivens DE, Ohman DE, Williams J, et al (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057

    Article  CAS  PubMed  Google Scholar 

  73. Hentzer M, Teitzel GM, Balzer GJ, et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    Article  CAS  PubMed  Google Scholar 

  74. Wozniak DJ, Wyckoff TJ, Starkey M, et al (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912

    Article  CAS  PubMed  Google Scholar 

  75. Boucher JC, Yu H, Mudd MH, et al (1997) Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838–3846

    CAS  PubMed  Google Scholar 

  76. Deretic V, Schurr MJ, Yu H (1995) Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 3:351–356

    Article  CAS  PubMed  Google Scholar 

  77. Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605

    CAS  PubMed  Google Scholar 

  78. Haas B, Murphy E, Castignetti D (1991) Siderophore synthesis by mucoid Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Can J Microbiol 37:654–657

    CAS  PubMed  Google Scholar 

  79. De Vos D, De Chial M, Cochez C et al (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of Type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388

    Article  CAS  PubMed  Google Scholar 

  80. Hancock RE, Mutharia LM, Chan L, et al (1983) Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 42:170–177

    CAS  PubMed  Google Scholar 

  81. Schiller NL, Alazard MJ, Borowski RS (1984) Serum sensitivity of a Pseudomonas aeruginosa mucoid strain. Infect Immun 45:748–755

    CAS  PubMed  Google Scholar 

  82. Eichler I, Joris L, Hsu YP, et al (1989) Nonopsonic antibodies in cystic fibrosis Pseudomonas aeruginosa lipopolysaccharide-specific immunoglobulin G antibodies from infected patient sera inhibit neutrophil oxidative responses. J Clin Invest 84:1794–1804

    CAS  PubMed  Google Scholar 

  83. Stevens DA, Moss RB, Kurup VP, et al (2003) Allergic bronchopulmonary aspergillosis in cystic fibrosis—state of the art: Cystic Fibrosis Foundation Consensus Conference. Clin Infect Dis 37[Suppl 3]:S225–S264

    Article  PubMed  Google Scholar 

  84. Burns JL, Van Dalfsen JM, Shawar RM, et al (1999) Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 179:1190–1196

    Article  CAS  PubMed  Google Scholar 

  85. Jensen T, Pedersen SS, Garne S, et al (1987) Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 19:831–838

    CAS  PubMed  Google Scholar 

  86. Nepomuceno IB, Esrig S, Moss RB (1999) Allergic bronchopulmonary aspergillosis in cystic fibrosis: role of atopy and response to itraconazole. Chest 115:364–370

    Article  CAS  PubMed  Google Scholar 

  87. Knowles MR, Boucher RC (2002) Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577

    Article  CAS  PubMed  Google Scholar 

  88. Schaad UB, Lang AB, Wedgwood J, et al (1990) Serotype-specific serum IgG antibodies to lipopolysaccharides of Pseudomonas aeruginosa in cystic fibrosis: correlation to disease, subclass distribution, and experimental protective capacity. Pediatr Res 27:508–513

    CAS  PubMed  Google Scholar 

  89. Winnie GB, Cowan RG (1991) Respiratory tract colonization with Pseudomonas aeruginosa in cystic fibrosis: correlations between anti-Pseudomonas aeruginosa antibody levels and pulmonary function. Pediatr Pulmonol 10:92–100

    CAS  PubMed  Google Scholar 

  90. Kosorok MR, Zeng L, West SE, et al (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 32:277–287

    Article  CAS  PubMed  Google Scholar 

  91. Pier GB, Saunders JM, Ames P, et al (1987) Opsonophagocytic killing antibody to Pseudomonas aeruginosa mucoid exopolysaccharide in older noncolonized patients with cystic fibrosis. N Engl J Med 317:793–798

    CAS  PubMed  Google Scholar 

  92. Frederiksen B, Koch C, Hoiby N (1999) Changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients (1974–1995). Pediatr Pulmonol 28:159–166

    Article  CAS  PubMed  Google Scholar 

  93. Ratjen F (2001) Changes in strategies for optimal antibacterial therapy in cystic fibrosis. Int J Antimicrob Agents 17:93–96

    Article  CAS  PubMed  Google Scholar 

  94. Regelmann WE, Elliott GR, Warwick WJ, et al (1990) Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis 141:914–921

    CAS  PubMed  Google Scholar 

  95. Gold R, Carpenter S, Heurter H, et al (1987) Randomized trial of ceftazidime versus placebo in the management of acute respiratory exacerbations in patients with cystic fibrosis. J Pediatr 111:907–913

    CAS  PubMed  Google Scholar 

  96. Breen L, Aswani N (2001) Elective versus symptomatic intravenous antibiotic therapy for cystic fibrosis. Cochrane Database Syst Rev: CD002767

    Google Scholar 

  97. Wiesemann HG, Steinkamp G, Ratjen F, et al (1998) Placebo-controlled, double-blind, randomized study of aerosolized tobramycin for early treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Pediatr Pulmonol 25:88–92

    Article  CAS  PubMed  Google Scholar 

  98. Ratjen F, Doring G, Nikolaizik WH (2001) Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis. Lancet 358:983–984

    Article  CAS  PubMed  Google Scholar 

  99. Griese M, Muller I, Reinhardt D (2002) Eradication of initial Pseudomonas aeruginosa colonization in patients with cystic fibrosis. Eur J Med Res 7:79–80

    PubMed  Google Scholar 

  100. Rosenfeld M, Ramsey BW, Gibson RL (2003) Pseudomonas acquisition in young patients with cystic fibrosis: pathophysiology, diagnosis, and management. Curr Opin Pulm Med 9:492–497

    Article  PubMed  Google Scholar 

  101. Stephens D, Garey N, Isles A, et al (1983) Efficacy of inhaled tobramycin in the treatment of pulmonary exacerbations in children with cystic fibrosis. Pediatr Infect Dis 2:209–211

    CAS  PubMed  Google Scholar 

  102. Schaad UB, Wedgwood-Krucko J, Suter S, et al (1987) Efficacy of inhaled amikacin as adjunct to intravenous combination therapy (ceftazidime and amikacin) in cystic fibrosis. J Pediatr 111:599–605

    CAS  PubMed  Google Scholar 

  103. Gibson RL, Emerson J, McNamara S, et al (2003) Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Am J Respir Crit Care Med 167:841–849

    Article  PubMed  Google Scholar 

  104. Stutman HR, Lieberman JM, Nussbaum E, et al (2002) Antibiotic prophylaxis in infants and young children with cystic fibrosis: a randomized controlled trial. J Pediatr 140:299–305

    Article  CAS  PubMed  Google Scholar 

  105. Ratjen F, Comes G, Paul K, et al (2001) Effect of continuous antistaphylococcal therapy on the rate of P. aeruginosa acquisition in patients with cystic fibrosis. Pediatr Pulmonol 31:13–16

    Article  CAS  PubMed  Google Scholar 

  106. Elphick HE, Tan A (2001) Single versus combination intravenous antibiotic therapy for people with cystic fibrosis. Cochrane Database Syst Rev: CD002007

    Google Scholar 

  107. Steinkamp G, Tummler B, Malottke R, et al (1989) Treatment of Pseudomonas aeruginosa colonization in cystic fibrosis. Arch Dis Child 64:1022–1028

    CAS  PubMed  Google Scholar 

  108. Ramsey BW, Pepe MS, Quan JM, et al (1999) Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med 340:23–30

    Article  CAS  PubMed  Google Scholar 

  109. Smith AL, Fiel SB, Mayer-Hamblett N, et al (2003) Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 123:1495–1502

    Article  CAS  PubMed  Google Scholar 

  110. Saiman L, Mehar F, Niu WW, et al (1996) Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin Infect Dis 23:532–537

    CAS  PubMed  Google Scholar 

  111. Lang BJ, Aaron SD, Ferris W, et al (2000) Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with multiresistant strains of Pseudomonas aeruginosa. Am J Respir Crit Care Med 162:2241–2245

    CAS  PubMed  Google Scholar 

  112. Aaron SD, Ferris W, Ramotar K, et al (2002) Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis. J Clin Microbiol 40:4172–4179

    Article  CAS  PubMed  Google Scholar 

  113. Moskowitz SM, Foster JM, Emerson J, et al (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922

    Article  CAS  PubMed  Google Scholar 

  114. Saiman L, Siegel J (2004) Infection control in cystic fibrosis. Clin Microbiol Rev 17:57–71

    Article  PubMed  Google Scholar 

  115. Farrell PM, Shen G, Splaingard M, et al (1997) Acquisition of Pseudomonas aeruginosa in children with cystic fibrosis. Pediatrics 100:E2

    Article  CAS  Google Scholar 

  116. Thomas J, Cook DJ, Brooks D (1995) Chest physical therapy management of patients with cystic fibrosis. A meta-analysis. Am J Respir Crit Care Med 151:846–850

    CAS  PubMed  Google Scholar 

  117. Oermann CM, Sockrider MM, Giles D, et al (2001) Comparison of high-frequency chest wall oscillation and oscillating positive expiratory pressure in the home management of cystic fibrosis: a pilot study. Pediatr Pulmonol 32:372–377

    Article  CAS  PubMed  Google Scholar 

  118. Konstan MW, Stern RC, Doershuk CF (1994) Efficacy of the Flutter device for airway mucus clearance in patients with cystic fibrosis. J Pediatr 124:689–693

    CAS  PubMed  Google Scholar 

  119. Ramsey BW, Astley SJ, Aitken ML, et al (1993) Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am Rev Respir Dis 148:145–151

    CAS  PubMed  Google Scholar 

  120. Ranasinha C, Assoufi B, Shak S, et al (1993) Efficacy and safety of short-term administration of aerosolised recombinant human DNase I in adults with stable stage cystic fibrosis. Lancet 342:199–202

    Article  CAS  PubMed  Google Scholar 

  121. Shah PL, Scott SF, Fuchs HJ, et al (1995) Medium term treatment of stable stage cystic fibrosis with recombinant human DNase I. Thorax 50:333–338

    CAS  PubMed  Google Scholar 

  122. Wilmott RW, Amin RS, Colin AA, et al (1996) Aerosolized recombinant human DNase in hospitalized cystic fibrosis patients with acute pulmonary exacerbations. Am J Respir Crit Care Med 153:1914–1917

    CAS  PubMed  Google Scholar 

  123. Nasr SZ, Kuhns LR, Brown RW, et al (2001) Use of computerized tomography and chest X-rays in evaluating efficacy of aerosolized recombinant human DNase in cystic fibrosis patients younger than age 5 years: a preliminary study. Pediatr Pulmonol 31:377–382

    Article  CAS  PubMed  Google Scholar 

  124. Robinson M, Regnis JA, Bailey DL, et al (1996) Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 153:1503–1509

    CAS  PubMed  Google Scholar 

  125. Daviskas E, Robinson M, Anderson SD, et al (2002) Osmotic stimuli increase clearance of mucus in patients with mucociliary dysfunction. J Aerosol Med 15:331–341

    Article  PubMed  Google Scholar 

  126. Wark PA, McDonald V (2000) Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst Rev: CD001506

    Google Scholar 

  127. Bisgaard H, Pedersen SS, Nielsen KG, et al (1997) Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Psuedomonas aeruginosa infection. Am J Respir Crit Care Med 156:1190–1196

    CAS  PubMed  Google Scholar 

  128. Balfour-Lynn IM, Klein NJ, Dinwiddie R (1997) Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child 77:124–130

    CAS  PubMed  Google Scholar 

  129. Eigen H, Rosenstein BJ, FitzSimmons S, et al (1995) A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 126:515–523

    CAS  PubMed  Google Scholar 

  130. Konstan MW, Byard PJ, Hoppel CL, et al (1995) Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 332:848–854

    Article  CAS  PubMed  Google Scholar 

  131. Oermann CM, Sockrider MM, Konstan MW (1999) The use of anti-inflammatory medications in cystic fibrosis: trends and physician attitudes. Chest 115:1053–1058

    Article  CAS  PubMed  Google Scholar 

  132. Schidlow DV, Taussig LM, Knowles MR (1993) Cystic Fibrosis Foundation consensus conference report on pulmonary complications of cystic fibrosis. Pediatr Pulmonol 15:187–198

    CAS  PubMed  Google Scholar 

  133. Wood BP (1997) Cystic fibrosis. Radiology 204:1–10

    CAS  PubMed  Google Scholar 

  134. Ruzal-Shapiro C (1998) Cystic fibrosis An overview. Radiol Clin N Am 36:143–161

    CAS  PubMed  Google Scholar 

  135. Kuhn JP (2004) Diseases of airways and abnormalities of pulmonary aeration. In: Kuhn JP, Slovis TL, Haller JO (eds) Caffey’s pediatric diagnostic imaging. Mosby, St. Louis, pp 929–982

    Google Scholar 

  136. van der Put JM, Meradji M, Danoesastro D, et al (1982) Chest radiographs in cystic fibrosis. A follow-up study with application of a quantitative system. Pediatr Radiol 12:57–61

    Article  PubMed  Google Scholar 

  137. Brasfield D, Hicks G, Soong S, et al (1979) The chest roentgenogram in cystic fibrosis: a new scoring system. Pediatrics 63:24–29

    CAS  PubMed  Google Scholar 

  138. Conway SP, Pond MN, Bowler I, et al (1994) The chest radiograph in cystic fibrosis: a new scoring system compared with the Chrispin-Norman and Brasfield scores. Thorax 49:860–862

    CAS  PubMed  Google Scholar 

  139. Weatherly MR, Palmer CG, Peters ME, et al (1993) Wisconsin cystic fibrosis chest radiograph scoring system. Pediatrics 91:488–495

    CAS  PubMed  Google Scholar 

  140. Shwachman H, Kulczycki LL (1958) Long-term study of 105 patients with cystic fibrosis. Am J Dis Child 96:6–15

    CAS  Google Scholar 

  141. Chrispin AR, Norman AP (1974) The systematic evaluation of a chest radiograph in CF. Pediatr Radiol 2:101–106

    Article  CAS  PubMed  Google Scholar 

  142. Terheggen-Lagro S, Truijens N, van Poppel N, et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445

    Article  PubMed  Google Scholar 

  143. Koscik RE, Kosorok MR, Farrell PM, et al (2000) Wisconsin cystic fibrosis chest radiograph scoring system: validation and standardization for application to longitudinal studies. Pediatr Pulmonol 29:457–467

    Article  CAS  PubMed  Google Scholar 

  144. Cleveland RH, Neish AS, Zurakowski D, et al (1998) Cystic fibrosis: a system for assessing and predicting progression. AJR 170:1067–1072

    CAS  PubMed  Google Scholar 

  145. Lynch DA, Brasch RC, Hardy KA, et al (1990) Pediatric pulmonary disease: assessment with high-resolution ultrafast CT. Radiology 176:243–248

    CAS  PubMed  Google Scholar 

  146. Nathanson I, Conboy K, Murphy S, et al (1991) Ultrafast computerized tomography of the chest in cystic fibrosis: a new scoring system. Pediatr Pulmonol 11:81–86

    CAS  PubMed  Google Scholar 

  147. Bhalla M, Turcios N, Aponte V, et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    CAS  PubMed  Google Scholar 

  148. Shah RM, Sexauer W, Ostrum BJ, et al (1997) High-resolution CT in the acute exacerbation of cystic fibrosis: evaluation of acute findings, reversibility of those findings, and clinical correlation. AJR 169:375–380

    CAS  PubMed  Google Scholar 

  149. Brody AS (1998) Cystic fibrosis: when should high-resolution computed tomography of the chest be obtained?. Pediatrics 101:1071

    Article  CAS  PubMed  Google Scholar 

  150. de Jong PA, Nakano Y, Lequin MH, et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97

    Article  PubMed  Google Scholar 

  151. Donnelly LF, Emery KH, Brody AS, et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR 176:303–306

    CAS  PubMed  Google Scholar 

  152. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR 176:297–301

    CAS  PubMed  Google Scholar 

  153. Frush DP, Yoshizumi TT, Paulson EK, et al (2001) Radiation dose from helical CT in children: comparison of multi-slice and single-slice protocols (abstract). Radiology 221:246

    Google Scholar 

  154. Frush DP, Applegate K (2004) Computed tomography and radiation: understanding the issues. J Am Coll Radiol 1:113–119

    Article  Google Scholar 

  155. Fricke BL, Donnelly LF, Frush DP, et al (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR 180:407–411

    PubMed  Google Scholar 

  156. Long FR, Castile RG, Brody AS, et al (1999) Lungs in infants and young children: improved thin-section CT with a noninvasive controlled-ventilation technique—initial experience. Radiology 212:588–593

    CAS  PubMed  Google Scholar 

  157. Long FR, Castile RG (2001) Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–422

    Article  CAS  PubMed  Google Scholar 

  158. Long FR (2001) High-resolution CT of the lungs in infants and young children. J Thorac Imaging 16:251–258

    Article  CAS  PubMed  Google Scholar 

  159. Robinson TE, Leung AN, Moss RB, et al (1999) Standardized high-resolution CT of the lung using a spirometer-triggered electron beam CT scanner. AJR 172:1636–1638

    CAS  PubMed  Google Scholar 

  160. Robinson TE, Leung AN, Northway WH, et al (2001) Spirometer-triggered high-resolution computed tomography and pulmonary function measurements during an acute exacerbation in patients with cystic fibrosis. J Pediatr 138:553–559

    Article  CAS  PubMed  Google Scholar 

  161. Long FR, Williams RS, Adler BH, et al (2003) Effect of tidal breathing and lung inflation on thin-section CT diagnosis of bronchial abnormalities and air trapping in infants with cystic fibrosis. Available at http://rsna2003.rsna.org/rsna2003/VBK/conference/ event_display.cfm?em_id=3100870. Cited 24 July 2004

  162. Goris ML, Zhu HJ, Blankenberg F, et al (2003) An automated approach to quantitative air trapping measurements in mild cystic fibrosis. Chest 123:1655–1663

    Article  PubMed  Google Scholar 

  163. Santamaria F, Grillo G, Guidi G, et al (1998) Cystic fibrosis: when should high-resolution computed tomography of the chest be obtained? Pediatrics 101:908–913

    Article  CAS  PubMed  Google Scholar 

  164. Helbich TH, Heinz-Peer G, Fleischmann D, et al (1999) Evolution of CT findings in patients with cystic fibrosis. AJR 173:81–88

    CAS  PubMed  Google Scholar 

  165. Oikonomou A, Manavis J, Karagianni P, et al (2002) Loss of FEV1 in cystic fibrosis: correlation with HRCT features. Eur Radiol 12:2229–2235

    Article  PubMed  Google Scholar 

  166. Maffessanti M, Candusso M, Brizzi F, et al (1996) Cystic fibrosis in children: HRCT findings and distribution of disease. J Thorac Imaging 11:27–38

    CAS  PubMed  Google Scholar 

  167. Brody AS, Molina PL, Klein JS, et al (1999) High-resolution computed tomography of the chest in children with cystic fibrosis: support for use as an outcome surrogate. Pediatr Radiol 29:731–735

    Article  CAS  PubMed  Google Scholar 

  168. Castile RG, Long FR, Flucke RL, et al (2000) Correlation of structural and functional abnormalities in the lungs of infants with cystic fibrosis. Pediatr Pulmonol Suppl 20:295

    Google Scholar 

  169. de Jong PA, Ottink MD, Robben SG, et al (2004) Pulmonary disease assessment in cystic fibrosis: comparison of CT scoring systems and value of bronchial and arterial dimension measurements. Radiology 231:434–439

    PubMed  Google Scholar 

  170. Robinson TE, Leung AN, Northway WH, et al (2003) Composite spirometric-computed tomography outcome measure in early cystic fibrosis lung disease. Am J Respir Crit Care Med 168:588–593

    Article  PubMed  Google Scholar 

  171. Brody AS (2004) Early morphologic changes in the lungs of asymptomatic infants and young children with cystic fibrosis. J Pediatr 144:145–146

    Article  PubMed  Google Scholar 

  172. Bedrossian CW, Greenberg SD, Singer DB, et al (1976) The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 7:195–204

    CAS  PubMed  Google Scholar 

  173. Long FR, Williams RS, Castile RG (2004) Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144:154–161

    Article  PubMed  Google Scholar 

  174. Dakin CJ, Pereira JK, Henry RL, et al (2002) Relationship between sputum inflammatory markers, lung function, and lung pathology on high-resolution computed tomography in children with cystic fibrosis. Pediatr Pulmonol 33:475–482

    Article  PubMed  Google Scholar 

  175. Goldin JG, Tashkin DP, Kleerup EC, et al (1999) Comparative effects of hydrofluoroalkane and chlorofluorocarbon beclomethasone dipropionate inhalation on small airways: assessment with functional helical thin-section computed tomography. J Allergy Clin Immunol 104:S258–S267

    CAS  PubMed  Google Scholar 

  176. Bonnel AS, Song SM, Kesavarju K, et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405

    Article  PubMed  Google Scholar 

  177. Donnelly LF, Gelfand MJ, Brody AS, et al (1997) Comparison between morphologic changes seen on high-resolution CT and regional pulmonary perfusion seen on SPECT in patients with cystic fibrosis. Pediatr Radiol 27:920–925

    Article  CAS  PubMed  Google Scholar 

  178. Jaffe A, Hamutcu R, Dhawan RT, et al (2001) Routine ventilation scans in children with cystic fibrosis: diagnostic usefulness and prognostic value. Eur J Nucl Med 28:1313–1318

    Article  CAS  PubMed  Google Scholar 

  179. Donnelly LF, MacFall JR, McAdams HP, et al (1999) Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung—preliminary observations. Radiology 212:885–889

    CAS  PubMed  Google Scholar 

  180. Tsui LC, Durie P (1997) Genotype and phenotype in cystic fibrosis. Hosp Pract (Off Ed) 32:115–118 (see also 123–119, 134, passim)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Stephanie Leak and Kirsten Lawson for their help with the preparation of text and graphics for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Effmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskowitz, S.M., Gibson, R.L. & Effmann, E.L. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment. Pediatr Radiol 35, 739–757 (2005). https://doi.org/10.1007/s00247-005-1445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-005-1445-3

Keywords

Navigation