Skip to main content
Log in

Optimisation of scoliosis examinations in children

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Objective

To present results of optimising scoliosis examination by changing from a conventional film/grid (F/G) to air-gap technique using computed radiography (CR), and to evaluate different methods for estimating effective radiation doses.

Materials and methods

Forty-nine children and adolescents were examined with an F/G technique, and 21 with air-gap and CR techniques. Entrance surface doses (ESD) were determined with lithium fluoride thermoluminescence dosimeters. For all patients, the effective radiation doses were determined using a hermaphrodite PCXMC computer program. For all F/G radiographs, the effective doses were also determined according to the NRPB-R279 report, and for 22 children (>9 years and/or >40 kg) also with the ODS-60 program, which allows separate gender calculations. Accumulated doses for 37 children examined more than once with F/G examinations were assessed.

Results

For F/G techniques, the ESDs for both frontal and lateral views varied with age and were significantly correlated to the patients' thickness. The calculated effective doses using the PCXMC program and the NRPB-R279 did not differ significantly for all frontal and lateral radiographs, respectively, but ODS-60 gave significantly higher values in female subjects. With air-gap and CR techniques, the mean effective doses were reduced by a factor over 10. The mean accumulated effective dose for 37 children with a mean of seven F/G examinations was 6.1 mSv, implying a risk of death of about 1:2,000 for boys and at least 1:1,000 for girls.

Conclusions

Paediatric scoliosis radiography should be considered a specialised procedure, which has to be optimised using a non-grid technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. a
Fig. 2. a
Fig. 3.

Similar content being viewed by others

References

  1. Lonstein JE, Bradford DS, Winter RB, et al (1994) Textbook of scoliosis and other spinal deformities. WB Saunders Company, Philadelphia

  2. Levy AR, Goldberg MS, Mayo NE, et al (1996) Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine 21:1540–1547

    CAS  PubMed  Google Scholar 

  3. Levy AR, Goldberg MS, Hanley JA, et al (1994) Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys 66:621–633

    CAS  PubMed  Google Scholar 

  4. Nash CL Jr, Gregg EC, Brown RH, et al (1979) Risks of exposure to X-rays in patients undergoing long-term treatment for scoliosis. J Bone Joint Surg Am 61:371–374

    PubMed  Google Scholar 

  5. Hoffman DA, Lonstein JE, Morin MM, et al (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst 81:1307–1312

    CAS  PubMed  Google Scholar 

  6. Doody MM, Lonstein JE, Stovall M, et al (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine 25:2052–2063

    PubMed  Google Scholar 

  7. 1990 Recommendations of the International Commission on Radiological Protection (1991)

  8. Howe GR, McLaughlin J (1996) Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study. Radiat Res 145:694–707

    CAS  PubMed  Google Scholar 

  9. Hallen S, Martling K, Mattsson S (1992) Dosimetry at x ray examinations of scoliosis. Radiat Prot Dosimetry 43:49–54

    Google Scholar 

  10. Almen AJ, Mattsson S (1996) Dose distribution at radiographic examination of the spine in pediatric radiology. Spine 21:750–756

    PubMed  Google Scholar 

  11. Chamberlain CC, Huda W, Hojnowski LS, et al (2000) Radiation doses to patients undergoing scoliosis radiography. Br J Radiol 73:847–853

    CAS  PubMed  Google Scholar 

  12. Geijer H, Beckman K, Jonsson B, et al (2001) Digital radiography of scoliosis with a scanning method: initial evaluation. Radiology 218:402–410

    CAS  PubMed  Google Scholar 

  13. Geijer H, Verdonck B, Beckman KW, et al (2003) Digital radiography of scoliosis with a scanning method: radiation dose optimization. Eur Radiol 13:543–551

    PubMed  Google Scholar 

  14. Bone CM, Hsieh GH (2000) The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop 20:251–254

    Article  CAS  PubMed  Google Scholar 

  15. Drummond D, Ranallo F, Lonstein J, et al(1983) Radiation hazards in scoliosis management. Spine 8:741–748

    CAS  PubMed  Google Scholar 

  16. Gray JE, Hoffman AD, Peterson HA (1983) Reduction of radiation exposure during radiography for scoliosis. J Bone Joint Surg Am 65:5–12

    CAS  PubMed  Google Scholar 

  17. Kogutt MS, Warren FH, Kalmar JA (1989) Low dose imaging of scoliosis: use of a computed radiographic imaging system. Pediatr Radiol 20:85–86

    CAS  PubMed  Google Scholar 

  18. Palmer SH, Starritt HC, Paterson M (1998) Radiation protection of the ovaries in young scoliosis patients. Eur Spine J 7:278–281

    Article  CAS  PubMed  Google Scholar 

  19. Jonsson A, Jonsson K, Eklund K, et al (1995) Computed radiography in scoliosis. Diagnostic information and radiation dose. Acta Radiol 36:429–433

    CAS  PubMed  Google Scholar 

  20. Cook JV, Pettett A, Pablot S, et al (1998) Guidelines on best practice in x-ray imaging of children. A manual for all x-ray departments. Queen Mary's Hospital for Children, Carshalton, UK

  21. Ardran GM, Coates R, Dickson RA, et al (1980) Assessment of scoliosis in children: low dose radiographic technique. Br J Radiol 53:146–147

    CAS  PubMed  Google Scholar 

  22. Kohn MM, Moores BM, Schibilla H, et al (1996) European Guidelines on Quality Criteria for Diagnostic Radiographic Images in Paediatrics. EUR 16261 EN. Luxembourg

  23. Julius HW, Marshall TO, Christensen P, et al (1994) Type testing of personal dosimeters for photon energy and angular response. Radiat Prot Dosimetry 54:273–277

    CAS  Google Scholar 

  24. Servomaa A, Tapiovaara M (1998) Organ dose calculation in medical x ray examinations by the program PCXMC. Radiat Prot Dosimetry 80:213–219

    Google Scholar 

  25. Harrison RM (1982) Backscatter factors for diagnostic radiology (1–4 mm Al HVL). Phys Med Biol 27:1465–1474

    Article  CAS  PubMed  Google Scholar 

  26. Hart D, Jones DG, Wall BF (1996) Coefficients for estimating effective doses from paediatric X-ray examinations. NRPB-R279

  27. Rannikko S, Ermakov I, Lampinen JS, et al (1997) Computing patient doses of X-ray examinations using a patient size- and sex-adjustable phantom. Br J Radiol 70:708–718

    CAS  PubMed  Google Scholar 

  28. Hart DWBF, Shrimpton PCBDR, Dance DR (2000) Reference doses and patient size in paediatric radiology. NRPB-R318

  29. Sources and effects of ionizing radiation (2000) United Nations Scientific Committee on the effect of atomic radiation. Unscear Report 2000, Vol II

    Google Scholar 

  30. BEIR V (1989) U.S. National Academy of Science, Report by the Committee on the Biological Effects of Ionizing Radiation, National Academy of Science/National Research Council. Washington D.C

  31. Andersen PE Jr, Andersen PE, van der Kooy P (1982) Dose reduction in radiography of the spine in scoliosis. Acta Radiol Diagn (Stockh) 23:251–253

    Google Scholar 

  32. Rao P, Gregg C (1984) A revised estimate of the risk of carcinogenesis from x-rays to scoliosis patients. Invest Radiol 19:58–60

    CAS  PubMed  Google Scholar 

  33. Lescreve JP, Van Tiggelen RP, Lamoureux J (1989) Reducing the radiation dosage in patients with a scoliosis. Internat Orthop 13:47–50

    CAS  Google Scholar 

  34. Butler PF, Thomas AW, Thompson WE, et al (1986) Simple methods to reduce patient exposure during scoliosis radiography. Radiol Technol 47:411–417

    Google Scholar 

  35. Hellstrom G, Irstam L, Nachemson A (1983) Reduction of radiation dose in radiologic examination of patients with scoliosis. Spine 8:28–30

    CAS  PubMed  Google Scholar 

  36. Gray JE, Stears JG, Frank ED (1983) Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement. Radiology 146:825–828

    CAS  PubMed  Google Scholar 

  37. Becker J (1979) Adjustable compensating filters for pediatric 72-inch spine radiography. Radiol Technol 51:11–16

    CAS  PubMed  Google Scholar 

  38. Ritter EM, Wright CE, Fritz SL, et al (1980) Use of a gradient intensifying screen for scoliosis radiography. Radiology 135:230–232

    CAS  PubMed  Google Scholar 

  39. Manninen H, Kiekara O, Soimakallio S, et al (1988) Reduction of radiation dose and imaging costs in scoliosis radiography. Application of large-screen image intensifier photofluorography. Spine 13:409–412

    CAS  PubMed  Google Scholar 

  40. Kalifa G, Charpak Y, Maccia C, et al (1998) Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28:557–561

    Article  CAS  PubMed  Google Scholar 

  41. Ruiz MJ, Gonzalez L, Vano E, et al (1991) Measurement of radiation doses in the most frequent simple examinations in paediatric radiology and its dependence on patient age. Br J Radiol 64:929–933

    CAS  PubMed  Google Scholar 

  42. Nottage WM, Waugh TR, McMaster WC (1981) Radiation exposure during scoliosis screening radiography. Spine 6:456–459

    CAS  PubMed  Google Scholar 

  43. Gogos KA, Yakoumakis EN, Tsalafoutas IA, et al (2003) Radiation dose considerations in common paediatric X-ray examinations. Pediatr Radiol 33:236–240

    PubMed  Google Scholar 

  44. Varchena V (2002) Pediatric phantoms. Pediatr Radiol 32:280–284

    Article  PubMed  Google Scholar 

  45. Theocharopoulos N, Perisinakis K, Damilakis J, et al (2002) Comparison of four methods for assessing patient effective dose from radiological examinations. Med Phys 29:2070–2079

    Article  PubMed  Google Scholar 

  46. Cristy M (1980) Mathematical phantoms representing children of various ages for the use in estimates of internal dose. Oak Ridge National Laboratory

  47. Brenner DJ (2002) Estimating cancer risks from pediatric CT: going from the qualitative to the quantitative. Pediatr Radiol 32:228–231

    Article  PubMed  Google Scholar 

  48. Pierce DA, Shimizu Y, Preston DL, et al (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res 146:1–27

    CAS  PubMed  Google Scholar 

  49. Boice JD Jr, Preston D, Davis FG, et al (1991) Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 125:214–222

    PubMed  Google Scholar 

  50. Miller AB, Howe GR, Sherman GJ, et al (1989) Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis. N Engl J Med 321:1285–1289

    Google Scholar 

  51. Mattsson A, Ruden BI, Palmgren J, et al (1995) Dose- and time-response for breast cancer risk after radiation therapy for benign breast disease. Br J Cancer 72:1054–1061

    Google Scholar 

  52. Hildreth NG, Shore RE, Dvoretsky PM (1989) The risk of breast cancer after irradiation of the thymus in infancy. N Engl J Med 321:1281–1284

    CAS  PubMed  Google Scholar 

  53. Lundell M, Mattsson A, Karlsson P, et al (1999) Breast cancer risk after radiotherapy in infancy: a pooled analysis of two Swedish cohorts of 17,202 infants. Radiat Res 151:626–632

    CAS  PubMed  Google Scholar 

  54. Thompson DE, Mabuchi K, Ron E, et al (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137:S17–S67

    CAS  PubMed  Google Scholar 

  55. Almen A, Loof M, Mattsson S (1996) Examination technique, image quality, and patient dose in paediatric radiology. A survey including 19 Swedish hospitals. Acta Radiol 37:337–342

    CAS  PubMed  Google Scholar 

  56. Bhatnagar JP, Gorson RO, Krohmer JS (1981) X-ray doses to patients undergoing full-spine radiographic examination. Radiology 138:231–233

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the staff of radiographers and nurses of our department of radiology for their contribution to and continuous enthusiasm and interest in the radiation-saving procedures of diagnostic radiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Grethe Jurik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, J., Jurik, A.G., Fiirgaard, B. et al. Optimisation of scoliosis examinations in children. Pediatr Radiol 33, 752–765 (2003). https://doi.org/10.1007/s00247-003-1015-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-003-1015-5

Keywords

Navigation