Skip to main content
Log in

Triiodothyronine Supplementation for Children Undergoing Cardiopulmonary Bypass: A Meta-Analysis

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Specific pediatric populations have exhibited disparate responses to triiodothyronine (T3) repletion during and after cardiopulmonary bypass (CPB). Objective: To determine if T3 supplementation improves outcomes in children undergoing CPB. We searched randomized controlled trials (RCT) evaluating T3 supplementation in children aged 0–3 years undergoing CPB between 1/1/2000 and 1/31/2022. We calculated Hazard ratios (HR) for time to extubation (TTE), ICU length of stay (LOS), and hospital LOS. 5 RCTs met inclusion criteria with available patient-level data. Two were performed in United States (US) and 3 in Indonesia with 767 total subjects (range 29- 220). Median (IQR) age 4.1 (1.6, 8.0) months; female 43%; RACHS-1 scores: 1–1%; 2–55%; 3–27%; 4–13%; 5–0.1%; 6–3.9%; 54% of subjects in US vs 46% in Indonesia. Baseline TSH and T3 were lower in Indonesia (p < 0.001). No significant difference occurred in TTE between treatment groups overall [HR 1.09 (CI, 0.94–1.26)]. TTE numerically favored T3-treated patients aged 1–5 months [HR 1.24 (CI, 0.97–1.60)]. TTE HR for the Indonesian T3 group was 1.31 (CI, 1.04–1.65) vs. 0.95 (CI, 0.78–1.15) in US. The ICU LOS HR for the Indonesian T3 group was 1.19 vs. 0.89 in US (p = 0.046). There was a significant T3 effect on hospital LOS [HR 1.30 (CI, 1.01–1.67)] in Indonesia but not in US [HR 0.99 (CI, 0.78–1.23)]. T3 supplementation in children undergoing CPB is simple, inexpensive, and safe, showing benefit in resource-limited settings. Differences in effects between settings likely relate to depression in baseline thyroid function often associated with malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bettendorf M, Schmidt KG, Tiefenbacher U et al (1997) Transient Secondary Hypothyroidism in Children after Cardiac Surgery. Pediatr Res 41:375–379. https://doi.org/10.1203/00006450-199703000-000122

    Article  CAS  PubMed  Google Scholar 

  2. Klemperer JD, Klein I, Gomez M et al (1995) Thyroid Hormone Treatment after Coronary-Artery Bypass Surgery. New Engl J Medicine 333:1522–1527. https://doi.org/10.1056/nejm1995120733323023

    Article  CAS  Google Scholar 

  3. Klemperer JD, Klein IL, Ojama K et al (1996) Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 61:1323–1329. https://doi.org/10.1016/0003-4975(96)00102-64

    Article  CAS  PubMed  Google Scholar 

  4. Mullis-Jansson SL, Argenziano M, Corwin S et al (1999) A randomized double-blind study of the effect of triiodothyronine on cardiac function and morbidity after coronary bypass surgery. J Thorac Cardiovasc Surg 117:1128–1134. https://doi.org/10.1016/s0022-5223(99)70249-75

    Article  CAS  PubMed  Google Scholar 

  5. Files MD, Kajimoto M, Priddy CMO et al (2014) Triiodothyronine Facilitates Weaning From Extracorporeal Membrane Oxygenation by Improved Mitochondrial Substrate Utilization. J Am Heart Assoc 3:e000680. https://doi.org/10.1161/jaha.113.0006806

    Article  PubMed  PubMed Central  Google Scholar 

  6. Olson AK, Bouchard B, Ning X-H et al (2012) Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol-heart C 302:H1086–H1093. https://doi.org/10.1152/ajpheart.00959.20117

    Article  CAS  Google Scholar 

  7. Bettendorf M, Schmidt KG, Grulich-Henn J et al (2000) Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356:529–534. https://doi.org/10.1016/s0140-6736(00)02576-9

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury D, Ojamaa K, Parnell VA et al (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025. https://doi.org/10.1067/mtc.2001.1161929

    Article  CAS  PubMed  Google Scholar 

  9. Mackie AS, Booth KL, Newburger JW et al (2005) A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg 130:810–816. https://doi.org/10.1016/j.jtcvs.2005.04.02510

    Article  CAS  PubMed  Google Scholar 

  10. Marwali EM, Boom CE, Budiwardhana N et al (2017) Oral Triiodothyronine for Infants and Children Undergoing Cardiopulmonary Bypass. Ann Thorac Surg 104:688–695. https://doi.org/10.1016/j.athoracsur.2017.01.00111

    Article  PubMed  Google Scholar 

  11. Portman MA, Fearneyhough C, Ning X-H et al (2000) Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg 120:604–608. https://doi.org/10.1067/mtc.2000.10890012

    Article  CAS  PubMed  Google Scholar 

  12. Talwar S, Bhoje A, Khadagawat R et al (2018) Oral thyroxin supplementation in infants undergoing cardiac surgery: A double-blind placebo-controlled randomized clinical trial. J Thorac Cardiovasc Surg 156:1209-1217.e3. https://doi.org/10.1016/j.jtcvs.2018.05.04413

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Tiwari N, Ramamurthy HR et al (2021) A prospective randomized clinical study of perioperative oral thyroid hormone treatment for children undergoing surgery for congenital heart diseases. Ann Pediatric Cardiol 14:170–177. https://doi.org/10.4103/apc.apc_193_2014

    Article  Google Scholar 

  14. Portman MA, Slee A, Olson AK et al (2010) Triiodothyronine Supplementation in Infants and Children Undergoing Cardiopulmonary Bypass (TRICC). Circulation 122:S224–S233. https://doi.org/10.1161/circulationaha.109.92639415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Portman MA, Slee AE, Roth SJ et al (2022) Triiodothyronine Supplementation in Infants Undergoing Cardiopulmonary Bypass: A Randomized Controlled Trial. Seminars Thorac Cardiovasc Surg. https://doi.org/10.1053/j.semtcvs.2022.01.00516

    Article  Google Scholar 

  16. Marwali EM, Boom CE, Sakidjan I et al (2013) Oral Triiodothyronine Normalizes Triiodothyronine Levels After Surgery for Pediatric Congenital Heart Disease&ast. Pediatr Crit Care Med 14:701–708. https://doi.org/10.1097/pcc.0b013e3182917f8717

    Article  PubMed  Google Scholar 

  17. Marwali EM, Lopolisa A, Sani AA et al (2022) Indonesian Study: Triiodothyronine for Infants Less than 5 Months Undergoing Cardiopulmonary Bypass. Pediatr Cardiol 43:726–734. https://doi.org/10.1007/s00246-021-02779-818

    Article  PubMed  Google Scholar 

  18. Tharmapoopathy M, Thavarajah A, Kenny RPW et al (2022) Efficacy and Safety of Triiodothyronine Treatment in Cardiac Surgery or Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Thyroid. https://doi.org/10.1089/thy.2021.060919

    Article  PubMed  Google Scholar 

  19. Flores S, Loomba RS, Checchia PA et al (2020) Thyroid Hormone (Triiodothyronine) Therapy in Children After Congenital Heart Surgery: A Meta-Analysis. Seminars Thorac Cardiovasc Surg 32:87–95. https://doi.org/10.1053/j.semtcvs.2019.05.02020

    Article  Google Scholar 

  20. Jenkins KJ, Gauvreau K, Newburger JW et al (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118. https://doi.org/10.1067/mtc.2002.11906421

    Article  PubMed  Google Scholar 

  21. Cantinotti M, Lorenzoni V, Storti S et al (2013) Thyroid and Brain Natriuretic Peptide Response in Children Undergoing Cardiac Surgery for Congenital Heart Disease: – Age-Related Variations and Prognostic Value –. Circ J 77:188–197. https://doi.org/10.1253/circj.cj-12-083422

    Article  CAS  PubMed  Google Scholar 

  22. Kaptein EM, Beale E, Chan LS (2009) Thyroid hormone therapy for obesity and nonthyroidal illnesses: a systematic review. J Clin Endocrinol Metabolism 94:3663–3675. https://doi.org/10.1210/jc.2009-0899

    Article  CAS  Google Scholar 

  23. Peeters RP (2007) Non thyroidal illness: to treat or not to treat? Ann D’endocrinologie 68:224–228. https://doi.org/10.1016/j.ando.2007.06.01124

    Article  CAS  Google Scholar 

  24. Groot LJD (2006) Non-Thyroidal Illness Syndrome is a Manifestation of Hypothalamic-Pituitary Dysfunction, and in View of Current Evidence, Should be Treated with Appropriate Replacement Therapies. Crit Care Clin 22:57–86. https://doi.org/10.1016/j.ccc.2005.10.00125

    Article  PubMed  Google Scholar 

  25. Jonklaas J, Bianco AC, Bauer AJ et al (2014) Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid 24:1670–1751. https://doi.org/10.1089/thy.2014.002826

    Article  PubMed  PubMed Central  Google Scholar 

  26. Radman M, Portman M (2016) Thyroid Hormone in the Pediatric Intensive Care Unit. J Pediatr Intensiv Care 05:154–161. https://doi.org/10.1055/s-0036-158328027

    Article  Google Scholar 

  27. Huang SA, Bianco AC (2008) Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pr Endocrinol Metab 4:148–155. https://doi.org/10.1038/ncpendmet072728

    Article  CAS  Google Scholar 

  28. Heinle JS, Diaz LK, Fox LS, Tex F, the CCMC Fort Worth, (1997) Early extubation after cardiac operations in neonates and young infants. J Thorac Cardiovasc Surg 114:413–418. https://doi.org/10.1016/s0022-5223(97)70187-929

    Article  CAS  PubMed  Google Scholar 

  29. Morales DLS, Carberry KE, Heinle JS et al (2008) Extubation in the Operating Room After Fontan’s Procedure: Effect on Practice and Outcomes. Ann Thorac Surg 86:576–582. https://doi.org/10.1016/j.athoracsur.2008.02.01030

    Article  PubMed  Google Scholar 

  30. Chang R-KR, Chen AY, Klitzner TS (2000) Factors Associated With Age at Operation for Children With Congenital Heart Disease. Pediatrics 105:1073–1081. https://doi.org/10.1542/peds.105.5.107331

    Article  CAS  PubMed  Google Scholar 

  31. Marwali EM, Kekalih A, Yuliarto S et al (2022) Paediatric COVID-19 mortality: a database analysis of the impact of health resource disparity. Bmj Paediatr Open 6:e001657. https://doi.org/10.1136/bmjpo-2022-00165732

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marwali EM, Kekalih A, Haas NA (2012) The effect of malnutrition on T3 levels in pediatric patients undergoing congenital heart surgery. Critics Care & Shock 15:103–110

    Google Scholar 

  33. Ross FJ, Radman M, Jacobs ML et al (2020) Associations between anthropometric indices and outcomes of congenital heart operations in infants and young children: An analysis of data from the Society of Thoracic Surgeons Database. Am Hear J 224:85–97. https://doi.org/10.1016/j.ahj.2020.03.01234

    Article  Google Scholar 

  34. Ross F, Latham G, Joffe D et al (2017) Preoperative malnutrition is associated with increased mortality and adverse outcomes after paediatric cardiac surgery. Cardiol Young 27:1716–1725. https://doi.org/10.1017/s104795111700106835

    Article  PubMed  PubMed Central  Google Scholar 

  35. Radman M, Mack R, Barnoya J et al (2014) The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J Thorac Cardiovasc Surg 147:442–450. https://doi.org/10.1016/j.jtcvs.2013.03.02336

    Article  PubMed  Google Scholar 

  36. Zimmermann-Belsing T, Brabant G, Holst J, Feldt-Rasmussen U (2003) Circulating leptin and thyroid dysfunction. Eur J Endocrinol 149:257–271. https://doi.org/10.1530/eje.0.149025737

    Article  CAS  PubMed  Google Scholar 

  37. Warner MH, Beckett GJ (2010) Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol 205:1–13. https://doi.org/10.1677/joe-09-041238

    Article  CAS  PubMed  Google Scholar 

  38. Mebis L, van den Berghe G (2009) The hypothalamus-pituitary-thyroid axis in critical illness. Neth J Med 67:332–340

    CAS  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

MR, AS, EM and MP: conceptualization; MR, AS and MP: methodology; MR, AS and MP: formal analysis and investigation; MR, AS and MP: writing - original draft preparation; MR, EM, AS and MP - review and editing; MR and MP - supervision.

Corresponding author

Correspondence to Monique R. Radman.

Ethics declarations

Conflict of Interest

The authors declare that they have no financial or non-financial competing interests.

Ethical Approval

This study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments of comparable ethical standards.

Informed Consent

Written and informed consent were taken from the parents before participation in each included study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (DOCX 396 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radman, M.R., Slee, A.E., Marwali, E.M. et al. Triiodothyronine Supplementation for Children Undergoing Cardiopulmonary Bypass: A Meta-Analysis. Pediatr Cardiol (2024). https://doi.org/10.1007/s00246-024-03465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-024-03465-1

Keywords

Navigation