Skip to main content

Advertisement

Log in

Development and Initial Validation of a Frailty Score for Pediatric Patients with Congenital and Acquired Heart Disease

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Frailty is a multi-dimensional clinical syndrome that is associated with increased morbidity and mortality and decreased quality of life. Children/adolescents with heart disease (HD) perform significantly worse for each frailty domain compared to non-HD peers. Our study aimed to create a composite frailty score (CFS) that can be applied to children/adolescents with HD and evaluate associations between the CFS and outcomes. Children and adolescents (n = 30) with HD (73% single ventricle, 20% heart failure, 7% pulmonary hypertension) were recruited from 2016 to 2017 (baseline). Five frailty domains were assessed at baseline using measures validated for pediatrics: (1) Slowness: 6-min walk test; (2) Weakness: handgrip strength; (3) Fatigue: PedsQL Multi-dimensional Fatigue Scale; (4) Body composition: triceps skinfold thickness; and (5) Physical activity questionnaire. Frailty points per domain (range = 0–5) were assigned based on z-scores or raw questionnaire scores and summed to produce a CFS (0 = least frail; 25 = most frail). Nonparametric bootstrapping was used to identify correlations between CFS and cross-sectional change in outcomes over 2.2 ± 0.2 years. The mean CFS was 12.5 ± 3.5. In cross-sectional analyses of baseline data, correlations (|r|≥ 0.30) were observed between CFS and NYHA class, the number of ancillary specialists, total prescribed medications, heart failure medications/day, exercise test derived chronotropic index and percent predicted VO2peak, and between child and parent proxy PEDsQL. At follow-up, CFS was correlated with an increase in the number of heart failure medications (r = 0.31). CFS was associated with cross-sectional outcomes in youth with heart disease. Longitudinal analyses were limited by small sample sizes due to loss to follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data transparency.

Code Availability

Not applicable.

References

  1. Centers for Disease Control and Prevention (2019) Data and statistics on congenital heart disease in the United States. https://www.cdc.gov/ncbddd/heartdefects/data.html. Accessed 10 March 2022.

  2. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN, Xu P, Correa A, Jenkins K, Marelli AJ (2016) Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation 134(2):101–109. https://doi.org/10.1161/circulationaha.115.019307

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shanker A, Upadhyay P, Rangasamy V, Muralidhar K, Subramaniam B (2021) Impact of frailty in cardiac surgical patients-assessment, burden, and recommendations. Ann Card Anaesth 24(2):133–139. https://doi.org/10.4103/aca.ACA_90_20

    Article  PubMed  PubMed Central  Google Scholar 

  4. Portal D, Hirsch R, Benderly M, Israeli Adult Congenital Heart Disease Reserch Group (2021) Increased prevalence of cardiac and non-cardiac chronic morbidity among adults with congenital heart disease. IJC Congenit Heart Dis 7:100314. https://doi.org/10.1016/j.ijcchd.2021.100314

    Article  Google Scholar 

  5. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 56(3):M146-156. https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  6. Checa-Lopez M, Oviedo-Briones M, Pardo-Gomez A, Gonzales-Turin J, Guevara-Guevara T, Carnicero JA, Alamo-Ascencio S, Landi F, Cesari M, Grodzicki T, Rodriguez-Manas L, FRAILTOOLS consortium, (2019) FRAILTOOLS study protocol: a comprehensive validation of frailty assessment tools to screen and diagnose frailty in different clinical and social settings and to provide instruments for integrated care in older adults. BMC Geriatr 19(1):86. https://doi.org/10.1186/s12877-019-1042-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381(9868):752–762. https://doi.org/10.1016/S0140-6736(12)62167-9

    Article  PubMed  Google Scholar 

  8. Lee DH, Buth KJ, Martin BJ, Yip AM, Hirsch GM (2010) Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. Circulation 121(8):973–978. https://doi.org/10.1161/CIRCULATIONAHA.108.841437

    Article  PubMed  Google Scholar 

  9. Buta BJ, Walston JD, Godino JG, Park M, Kalyani RR, Xue QL, Bandeen-Roche K, Varadhan R (2016) Frailty assessment instruments: systematic characterization of the uses and contexts of highly-cited instruments. Ageing Res Rev 26:53–61. https://doi.org/10.1016/j.arr.2015.12.003

    Article  PubMed  Google Scholar 

  10. McNallan SM, Singh M, Chamberlain AM, Kane RL, Dunlay SM, Redfield MM, Weston SA, Roger VL (2013) Frailty and healthcare utilization among patients with heart failure in the community. JACC Heart Fail. 1(2):135–141. https://doi.org/10.1016/j.jchf.2013.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roe MT, Armstrong PW, Fox KA, White HD, Prabhakaran D, Goodman SG, Cornel JH, Bhatt DL, Clemmensen P, Martinez F (2012) Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med. 367(14):1297–1309. https://doi.org/10.1056/NEJMoa1205512

    Article  CAS  PubMed  Google Scholar 

  12. Mlynarska A, Mlynarski R, Golba KS (2017) Frailty syndrome in patients with heart rhythm disorders. Geriatr Gerontol Int 17(9):1313–1318. https://doi.org/10.1111/ggi.12868

    Article  PubMed  Google Scholar 

  13. Afilalo J, Karunananthan S, Eisenberg MJ, Alexander KP, Bergman H (2009) Role of frailty in patients with cardiovascular disease. Am J Card 103(11):1616–1621. https://doi.org/10.1016/j.amjcard.2009.01.375

    Article  PubMed  Google Scholar 

  14. Von Haehling S, Anker SD, Doehner W, Morley JE, Vellas B (2013) Frailty and heart disease. Int J Cardiol 168(3):1745–1747. https://doi.org/10.1016/j.ijcard.2013.07.068

    Article  Google Scholar 

  15. Panchangam C, White DA, Goudar S, Birnbaum B, Malloy-Walton L, Gross-Toalson J, Reid KJ, Shirali G, Parthiban A (2020) Translation of the frailty paradigm from older adults to children with cardiac disease. Pediatr Cardiol 41(5):1031–1041. https://doi.org/10.1007/s00246-020-02354-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lurz E, Quammie C, Englesbe M, Alonso EM, Lin HC, Hsu EK, Furuya KN, Gupta NA, Venkat VL, Daniel JF, Leonis MA, Miloh T, Telega GW, Yap J, Menendez J, Book LS, Himes RW, Sundaram SS, Parekh R, Sonnenday C, Bucuvalas J, Ng VL, Kamath BM (2018) Frailty in children with liver disease: a prospective multicenter study. J Pediatr 194:109–115. https://doi.org/10.1016/j.jpeds.2017.10.066

    Article  PubMed  Google Scholar 

  17. Geiger R, Strasak A, Treml B, Gasser K, Kleinsasser A, Fischer V, Geiger H, Loeckinger A, Stein JI (2007) Six-minute walk test in children and adolescents. J Pediatr 150(4):395–399. https://doi.org/10.1016/j.jpeds.2006.12.052

    Article  PubMed  Google Scholar 

  18. España-Romero V, Ortega FB, Vicente-Rodríguez G, Artero EG, Rey JP, Ruiz JR (2010) Elbow position affects handgrip strength in adolescents: validity and reliability of Jamar, DynEx, and TKK dynamometers. J Strength Cond Res 24(1):272–277. https://doi.org/10.1519/JSC.0b013e3181b296a5

    Article  PubMed  Google Scholar 

  19. Bohannon RW, Wang YC, Bubela D, Gershon RC (2017) Handgrip strength: a population-based study of norms and age trajectories for 3- to 17-year-olds. Pediatr Phys Ther 29(2):118–123. https://doi.org/10.1097/pep.0000000000000366

    Article  PubMed  Google Scholar 

  20. Chou J (2012) PediTools: CDC skinfold 1.5 - 20 y. Centers for disease control: https://peditools.org/cdcskin/index.php. Accessed 10 March 2022

  21. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: Methods and development. Vital Health Stat 11(246):1–190.

    Google Scholar 

  22. Voss C, Dean PH, Gardner RF, Duncombe SL, Harris KC (2017) Validity and reliability of the physical activity questionnaire for children (PAQ-C) and adolescents (PAQ-A) in individuals with congenital heart disease. PLoS ONE 12(4):e0175806. https://doi.org/10.1371/journal.pone.0175806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kowalski KC, Crocker PR, Donen RM (2004) The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) manual. Coll Kinesiol Univ Sask 87(1):1–38

    Google Scholar 

  24. Kowalski KC, Crocker PR, Faulkner RA (1997) Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci 9(2):174–186. https://doi.org/10.1123/pes.9.2.174

    Article  Google Scholar 

  25. Varni JW, Burwinkle TM, Seid M (2006) The PedsQL 4.0 as a school population health measure: feasibility, reliability, and validity. Qual Life Res 15(2):203–215. https://doi.org/10.1007/s11136-005-1388-z

    Article  PubMed  Google Scholar 

  26. O’Byrne ML, Kim S, Hornik CP, Yerokun BA, Matsouaka RA, Jacobs JP, Jacobs ML, Jonas RA (2017) Effect of obesity and underweight status on perioperative outcomes of congenital heart operations in children, adolescents, and young adults: an analysis of data from the society of thoracic surgeons database. Circulation 136(8):704–718. https://doi.org/10.1161/CIRCULATIONAHA.116.026778

    Article  PubMed  PubMed Central  Google Scholar 

  27. Varni JW, Burwinkle TM, Seid M, Skarr D (2003) The Pedsql 4.0 as a pediatric population health measure: feasibility, reliability, and validity. Ambul. Pediatr. 3(6):329–341. https://doi.org/10.1367/1539-4409

    Article  PubMed  Google Scholar 

  28. R Core Team (2013) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  29. Wasserstein RL, Schirm AL, Lazar NA (2019) Moving to a world beyond “p< 0.05.” Am Stat 73(1):1–19. https://doi.org/10.1080/00031305.2019.1583913

    Article  Google Scholar 

  30. McShane BB, Gal D, Gelman A, Robert C, Tackett JL (2019) Abandon statistical significance. Am Stat 73(1):235–245. https://doi.org/10.1080/00031305.2018.1527253

    Article  Google Scholar 

  31. Amrhein V, Greenland S, McShane B (2019) Scientists rise up against statistical significance. Nature 567(7748):305–307. https://doi.org/10.1038/d41586-019-00857-9

    Article  CAS  PubMed  Google Scholar 

  32. Sgambat K, Matheson MB, Hooper SR, Warady B, Furth S, Moudgil A (2019) Prevalence and outcomes of fragility: a frailty-inflammation phenotype in children with chronic kidney disease. Pediatr Nephrol 34(12):2563–2569. https://doi.org/10.1007/s00467-019-04313-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. McAdams-DeMarco MA, Ying H, Thomas AG, Warsame F, Shaffer AA, Haugen CE, Garonzik-Wang JM, Desai NM, Varadhan R, Walston J (2018) Frailty, inflammatory markers, and waitlist mortality among patients with end-stage renal disease in a prospective cohort study. Transplantation 102(10):1740. https://doi.org/10.1097/TP.0000000000002213

    Article  PubMed  PubMed Central  Google Scholar 

  34. Panepinto JA, Torres S, Bendo CB, McCavit TL, Dinu B, Sherman-Bien S, Bemrich-Stolz C, vVarni JW, (2014) PedsQL™ multidimensional fatigue scale in sickle cell disease: feasibility, reliability, and validity. Pediatr Blood Cancer 61(1):171–177. https://doi.org/10.1002/pbc.24776

    Article  PubMed  Google Scholar 

  35. Bervoets L, Van Noten C, Van Roosbroeck S, Hansen D, Van Hoorenbeeck K, Verheyen E, Van Hal G, Vankerckhoven V (2014) Reliability and validity of the Dutch physical activity questionnaires for children (PAQ-C) and adolescents (PAQ-A). Arch Public Health 72(1):1–7. https://doi.org/10.1186/2049-3258-72-47

    Article  Google Scholar 

  36. Diller G-P, Dimopoulos K, Okonko D, Uebing A, Broberg CS, Babu-Narayan S, Bayne S, Poole-Wilson PA, Sutton R, Francis DP (2006) Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol 48(6):1250–1256. https://doi.org/10.1016/j.jacc.2006.05.051

    Article  PubMed  Google Scholar 

  37. Diller GP, Dimopoulos K, Okonko D, Li W, Babu-Narayan SV, Broberg CS, Johansson B, Bouzas B, Mullen MJ, Poole-Wilson PA, Francis DP, Gatzoulis MA (2005) Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 112(6):828–835. https://doi.org/10.1161/circulationaha.104.529800

    Article  PubMed  Google Scholar 

  38. Fernandes SM, Alexander ME, Graham DA, Khairy P, Clair M, Rodriguez E, Pearson DD, Landzberg MJ, Rhodes J (2011) Exercise testing identifies patients at increased risk for morbidity and mortality following fontan surgery. Congenit Heart Dis 6(4):294–303. https://doi.org/10.1111/j.1747-0803.2011.00500.x

    Article  PubMed  Google Scholar 

  39. Inuzuka R, Diller G-P, Borgia F, Benson L, Tay EL, Alonso-Gonzalez R, Silva M, Charalambides M, Swan L, Dimopoulos K (2012) Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 125(2):250–259. https://doi.org/10.1161/CIRCULATIONAHA.111.058719

    Article  PubMed  Google Scholar 

  40. Woudstra OI, Kuijpers JM, Meijboom FJ, Post MC, Jongbloed MR, Duijnhouwer AL, Van Dijk AP, Van Melle JP, Konings TC, Zwinderman AH (2019) High burden of drug therapy in adult congenital heart disease: polypharmacy as marker of morbidity and mortality. Eur Heart J Cardiovasc Pharmacother 5(4):216–225. https://doi.org/10.1093/ehjcvp/pvz014

    Article  PubMed  PubMed Central  Google Scholar 

  41. Latal B, Helfricht S, Fischer JE, Bauersfeld U, Landolt MA (2009) Psychological adjustment and quality of life in children and adolescents following open-heart surgery for congenital heart disease: a systematic review. BMC Pediatr 9(1):1–10. https://doi.org/10.1186/1471-2431-9-6

    Article  Google Scholar 

  42. Cuypers JA, Opić P, Menting ME, Utens EM, Witsenburg M, Helbing WA, van den Bosch AE, Ouhlous M, van Domburg RT, Meijboom FJ (2013) The unnatural history of an atrial septal defect: longitudinal 35 year follow up after surgical closure at young age. Heart 99(18):1346–1352. https://doi.org/10.1136/heartjnl-2013-304225

    Article  PubMed  Google Scholar 

  43. McNally JD, Menon K, Chakraborty P, Fisher L, Williams KA, Al-Dirbashi OY, Girolamo T, Maharajh G, Doherty DR (2013) Impact of anesthesia and surgery for congenital heart disease on the vitamin d status of infants and children: a prospective longitudinal study. Anesthesiology 119(1):71–80. https://doi.org/10.1097/ALN.0b013e31828ce817

    Article  CAS  PubMed  Google Scholar 

  44. Atz AM, Zak V, Mahony L, Uzark K, D’agincourt N, Goldberg DJ, Williams RV, Breitbart RE, Colan SD, Burns KM (2017) Longitudinal outcomes of patients with single ventricle after the fontan procedure. J Am Coll Cardiol 69(22):2735–2744. https://doi.org/10.1016/j.jacc.2017.03.582

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hövels-Gürich H, McCusker C (2016) Neurodevelopmental patterns in congenital heart disease across childhood: Longitudinal studies from Europe. In: McCusker C, Casey F (eds) Congenital Heart Disease and Neurodevelopment. Academic Press, Cambridge

    Google Scholar 

  46. Müller J, Ewert P, Hager A (2015) Only slow decline in exercise capacity in the natural history of patients with congenital heart disease: a longitudinal study in 522 patients. Eur J Prev Cardiol 22(1):113–118. https://doi.org/10.1177/2047487313505242

    Article  PubMed  Google Scholar 

  47. Shafer KM, Opotowsky AR, Rhodes J (2018) Exercise testing and spirometry as predictors of mortality in congenital heart disease: contrasting fontan physiology with repaired tetralogy of fallot. Congenit Heart Dis 13(6):903–910. https://doi.org/10.1111/chd.12661

    Article  PubMed  Google Scholar 

  48. Müller J, Christov F, Schreiber C, Hess J, Hager A (2009) Exercise capacity, quality of life, and daily activity in the long-term follow-up of patients with univentricular heart and total cavopulmonary connection. Eur Heart J 30(23):2915–2920. https://doi.org/10.1093/eurheartj/ehp305

    Article  PubMed  Google Scholar 

  49. Tamayo C, Manlhiot C, Patterson K, Lalani S, McCrindle BW (2015) Longitudinal evaluation of the prevalence of overweight/obesity in children with congenital heart disease. Can J Cardiol 31(2):117–123. https://doi.org/10.1016/j.cjca.2014.08.024

    Article  PubMed  Google Scholar 

  50. Connolly D, Rutkowski M, Auslender M, Artman M (2001) The New York university pediatric heart failure index: a new method of quantifying chronic heart failure severity in children. J Peds 138(5):644–648. https://doi.org/10.1067/mpd.2001.114020

    Article  CAS  Google Scholar 

  51. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD (2006) The seattle heart failure model: prediction of survival in heart failure. Circulation 113(11):1424–1433. https://doi.org/10.1161/CIRCULATIONAHA.105.584102

    Article  PubMed  Google Scholar 

  52. Ketchum ES, Levy WC (2011) Establishing prognosis in heart failure: a multimarker approach. Prog Cardiovasc Dis 54(2):86–96. https://doi.org/10.1016/j.pcad.2011.03.003

    Article  PubMed  Google Scholar 

Download references

Funding

David White is supported by the NIH and NHLBI (K23HL159325). No other funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by BB, DW, CP, GS, JG-T, SS, and VS. The first draft of the manuscript was written by SS, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David A. White.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Human Investigation Committee (IRB) of the Children’s Mercy Medical Center, Kansas City.

Consent to Participate

Informed consent was obtained from legal guardians.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Studyvin, S., Birnbaum, B.F., Staggs, V.S. et al. Development and Initial Validation of a Frailty Score for Pediatric Patients with Congenital and Acquired Heart Disease. Pediatr Cardiol 45, 888–900 (2024). https://doi.org/10.1007/s00246-022-03045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-022-03045-1

Keywords

Navigation