Skip to main content

Advertisement

Log in

Pulmonary Artery Development Over Time in Severe Ebstein Anomaly

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Recently, the outcome of severe Ebstein anomaly (EA) has improved with the prevalence of the Starnes procedure. However, time-dependent changes in the size of the central pulmonary artery (PA) have not been fully understood. A retrospective chart review of patients with EA who underwent the Starnes procedure during the neonatal period and those with pulmonary atresia with intact ventricular septum (PAIVS) was performed at Fukuoka Children’s Hospital. There were 14 patients in the severe EA group and 36 in the PAIVS group, with mean observational periods of 3.8 and 4.2 years, respectively. No significant difference in survival was observed between the groups. However, the mean size of the central PA was smaller in the severe EA group at each surgical stage (after systemic-to-pulmonary shunt, after the bidirectional Glenn procedure, and after the Fontan procedure). A significantly larger ventricular volume was observed in the severe EA group after the Fontan procedure. The growth of the central PA was poor in patients with severe EA. Patients with severe EA should be carefully monitored in this regard both before and after undergoing the Fontan procedure. Further studies regarding long-term prognosis are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sainathan S, da Fonseca da Silva L, da Silva JP (2020) Ebstein’s anomaly: contemporary management strategies. J Thorac Dis 12(3):1161–1173

    Article  Google Scholar 

  2. Lupo PJ, Langlois PH, Mitchell LE (2011) Epidemiology of Ebstein anomaly: prevalence and patterns in Texas, 1999–2005. Am J Med Genet A 155A:1007–1014

    Article  Google Scholar 

  3. Pavlova M, Fouron JC, Drblik SP, van Doesburg NH, Bigras JL, Smallhorn J et al (1998) Factors affecting the prognosis of Ebstein’s anomaly during fetal life. Am Heart J 135:1081–1085

    Article  CAS  Google Scholar 

  4. Jaiswal PK, Balakrishnan KG, Saha A, Venkitachalam CG, Tharakan J, Titus T (1994) Clinical profile and natural history of Ebstein’s anomaly of tricuspid valve. Int J Cardiol 46:113–119

    Article  CAS  Google Scholar 

  5. Roberson DA, Silverman NH (1989) Ebstein’s anomaly: Echocardiographic and clinical features in the fetus and neonate. J Am Coll Cardiol 14:1300–1307

    Article  CAS  Google Scholar 

  6. Starnes VA, Pitlick PT, Bernstein D, Griffin ML, Choy M, Shumway NE (1991) Ebstein’s anomaly appearing in the neonate. A new surgical approach. J Thorac Cardiovasc Surg 101:1082

    Article  CAS  Google Scholar 

  7. Kumar SR, Kung G, Noh N, Castillo N, Fagan B, Wells WJ et al (2016) Single-ventricle outcomes after neonatal palliation of severe Ebstein anomaly with Modified Starnes procedure. Circulation 134:1257–1264

    Article  Google Scholar 

  8. Reemtsen BL, Fagan BT, Wells WJ, Starnes VA (2006) Current surgical therapy for Ebstein anomaly in neonates. J Thorac Cardiovasc Surg 132:1285–1290

    Article  Google Scholar 

  9. Choussat A, Fontan F, Besse B, Vallot F, Chauve A, Bricaud H (1977) Selection criteria for Fontan’s procedure. In: Anderson RH, Shinebourne EA (eds) Paediatric cardiology. Churchill Livingstone, Edinburgh, pp 559–566

    Google Scholar 

  10. Fick A (1870) Über die Messung des Blutquantums in der Herzventrikeln. Stahelschen Universitats-Buch Kunsthandlung; Sitzungsberichte der physikalisch-medicinischen Gesellschaftzu Würzburg pp XVI–XVII

  11. LaFarge CG, Miettinen OS (1970) The estimation of oxygen consumption. Cardiovasc Res 4:23–30

    Article  CAS  Google Scholar 

  12. Nakata S, Imai Y, Takanashi Y, Kurosawa H, Tezuka K, Nakazawa M et al (1984) A new method for the quantitative standardization of cross-sectional areas of the pulmonary arteries in congenital heart diseases with decreased pulmonary blood flow. J Thorac Cardiovasc Surg 88:610–619

    Article  CAS  Google Scholar 

  13. Dodge HT, Sandler H, Ballew DW, Lord JD Jr (1960) The use of biplane angiocardigraphy for the measurement of left ventricular volume in man. Am Heart J 60:762–776

    Article  CAS  Google Scholar 

  14. Nakazawa M, Marks RA, Isabel-Jones J, Jarmakani JM (1976) Right and left ventricular volume characteristics in children with pulmonary stenosis and intact ventricular septum. Circulation 53:884–890

    Article  CAS  Google Scholar 

  15. Senzaki H, Isoda T, Ishizawa A, Hishi T (1994) Reconsideration of criteria for the Fontan operation. Influence of pulmonary artery size on postoperative hemodynamics of the Fontan operation. Circulation 89:266–271

    Article  CAS  Google Scholar 

  16. Kodama Y, Ishikawa Y, Kuraoka A, Nakamura M, Oda S, Nakano T et al (2020) Systemic-to-pulmonary collateral flow correlates with clinical condition late after the Fontan procedure. Pediatr Cardiol 41:1800–1806

    Article  Google Scholar 

  17. Ridderbos FS, Bonenkamp BE, Meyer SL, Eshuis G, Ebels T, van Melle JP et al (2020) Pulmonary artery size is associated with functional clinical status in the Fontan circulation. Heart 106:233–239

    PubMed  Google Scholar 

  18. Knott-Craig CJ, Julsrud PR, Schaff HV, Puga FJ, Danielson GK (1993) Pulmonary artery size and clinical outcome after the modified Fontan operation. Ann Thorac Surg 55:646–651

    Article  CAS  Google Scholar 

  19. Fontan F, Fernandez G, Costa F, Tritto F, Blackstone EH, Kirklin JW et al (1989) The size of the pulmonary arteries and the results of the Fontan operation. J Thorac Cardiovasc Surg 98:711–712

    Article  CAS  Google Scholar 

  20. O’Connor MJ, Ravishankar C, Ballweg JA, Gillespie MJ, Gaynor JW, Tabbutt S et al (2011) Early systemic-to-pulmonary artery shunt intervention in neonates with congenital heart disease. J Thorac Cardiovasc Surg 142:106–112

    Article  Google Scholar 

  21. Reddy VM, McElhinney DB, Moore P, Petrossian E, Hanley FL (1996) Pulmonary artery growth after bidirectional cavopulmonary shunt: is there a cause for concern? J Thorac Cardiovasc Surg 112:1180–1190

    Article  CAS  Google Scholar 

  22. Mendelsohn AM, Bove EL, Lupinetti FM, Crowley DC, Lloyd TR, Beekman RH 3rd (1994) Central pulmonary artery growth patterns after the bidirectional Glenn procedure. J Thorac Cardiovasc Surg 107:1284–1290

    Article  CAS  Google Scholar 

  23. Yoshida M, Yamaguchi M, Yoshimura N, Murakami H, Matsuhisa H, Okita Y (2005) Appropriate additional pulmonary blood flow at the bidirectional Glenn procedure is useful for completion of total cavopulmonary connection. Ann Thorac Surg 80:976–981

    Article  Google Scholar 

  24. Sokol J, Bohn D, Lacro RV, Ryan G, Stephens D, Rabinovitch M et al (2002) Fetal pulmonary artery diameters and their association with lung hypoplasia and postnatal outcome in congenital diaphragmatic hernia. Am J Obstet Gynecol 186:1085–1090

    Article  Google Scholar 

  25. Tanaka T, Yamaki S, Ohno T, Ozawa A, Kakizawa H, Iinuma K (1998) The histology of the lung in neonates with tricuspid valve disease and gross cardiomegaly due to severe regurgitation. Pediatr Cardiol 19:133–138

    Article  CAS  Google Scholar 

  26. Latus H, Gummel K, Diederichs T, Bauer A, Rupp S, Kerst G et al (2013) Aortopulmonary collateral flow is related to pulmonary artery size and affects ventricular dimensions in patients after the Fontan procedure. PLoS ONE 26:e81684

    Article  Google Scholar 

  27. Lee AH, Moore IE, Fagg NL, Cook AC, Kakadekar AP, Allan LD et al (1995) Histological changes in the left and right ventricle in hearts with Ebstein’s malformation and tricuspid valvar dysplasia: a morphometric study of patients dying in the fetal and perinatal periods. Cardiovasc Pathol 4:19–24

    Article  CAS  Google Scholar 

  28. Eckersley LG, Howley LW, van der Velde ME, Khoo NS, Mah K, Brooks P et al (2019) Quantitative assessment of left ventricular dysfunction in fetal Ebstein’s anomaly and tricuspid valve dysplasia. J Am Soc Echocardiogr 32:1598–1607

    Article  Google Scholar 

  29. Goleski PJ, Sheehan FH, Chen SS, Kilner PJ, Gatzoulis MA (2014) The shape and function of the left ventricle in Ebstein’s anomaly. Int J Cardiol 171:404–412

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Makoto Nakamura who contributed to the patient’s database related to this and died during this study. We also thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Kodama.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 1522 KB)

Supplemental Figure 1 Changes in PAI throughout the lives of each patient in the severe EA group. EA, Ebstein anomaly; PAIVS, pulmonary atresia with intact ventricular septum; PAI, pulmonary artery index

Supplementary file2 (TIFF 1522 KB)

Supplemental Figure 2 Changes in PAI throughout the lives of each patient in the PAIVS group. EA, Ebstein anomaly; PAIVS, pulmonary atresia with intact ventricular septum; PAI, pulmonary artery index

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirozu, H., Kodama, Y., Kuraoka, A. et al. Pulmonary Artery Development Over Time in Severe Ebstein Anomaly. Pediatr Cardiol 43, 1653–1658 (2022). https://doi.org/10.1007/s00246-022-02898-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-022-02898-w

Keywords

Navigation