Skip to main content

Influence of Surgical Methods on Hemodynamics in Supravalvular Aortic Stenosis: A Computational Hemodynamic Analysis

Abstract

We compared differences in the hemodynamic parameters of multiple surgical techniques for supravalvular aortic stenosis (SVAS). A three-dimensional model was reconstructed based on a patient’s CT scan. Virtual McGoon, Doty, and Brom repairs were completed using computer-aided design (CAD). Hemodynamic parameters were calculated through computational fluid dynamics (CFD). The velocity profile and wall shear stress (WSS) showed the blood flow pattern. Energy loss (EL) and energy efficiency (EE) were calculated to estimate the cardiac workload. The perioperative blood flow ratio (BFR) of brachiocephalic vessels and coronary arteries was calculated. The preoperative flow velocity was abnormally high (> 5.0 m/s). High WSS was detected at the sinotubular junction (STJ), and its preoperative distribution in the aorta was uneven. High-speed flow disappeared after each of the three operations. The WSS distribution at the aortic root was consistent with the postoperative STJ structure of each operation. EL in the systolic phase decreased postoperatively (Original: 634 mW, McGoon: 218 mW, Doty: 278 mW, Brom: 255 mW). No significant difference in brachiocephalic BFR was detected among the different techniques. A slightly increased coronary BFR (Original: 7.56%, McGoon: 7.99%, Doty: 8.55%, Brom: 8.89%) was detected. McGoon, Doty, and Brom repair each effectively restored stable blood flow and greatly improved EE. The best WSS distribution and coronary blood supply were achieved after Brom repair due to its ability to reconstruct the symmetrical aortic root structure. CFD combined with a virtual operation is a promising method in surgical planning and optimization for SVAS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Denie JJ, Verheugt AP (1958) Supravalvular aortic stenosis. Circulation 18(5):902–908

    CAS  Article  Google Scholar 

  2. Lev M (1953) The pathologic anatomy of cardiac complexes associated with transposition of arterial trunks. Lab Invest 2(4):296–311

    CAS  PubMed  Google Scholar 

  3. McGoon DC, Mankin HT, Vlad P (1961) The surgical treatment of supravalvular aortic stenosis. J Thorac Cardiovasc Surg 41:125–133

    Article  Google Scholar 

  4. Brom AG (1988) Obstruction of the left ventricular outflow tract. In: Khonsari S (ed) Cardiac surgery: safeguards and pitfalls in operative technique. Aspen Publishers, Rockville, pp 276–80

    Google Scholar 

  5. Doty DB, Polansky DB, Jenson CB (1977) Supravalvular aortic stenosi. Repair by extended aortoplasty. J Thorac Cardiovasc Surg 74(3):362–71

    CAS  Article  Google Scholar 

  6. Ibarra C, Spigel Z, John R, Binsalamah ZM, Adachi I, Heinle JS et al (2020) Surgical techniques in management of supravalvular aortic stenosis in children. Ann Thorac Surg 111(6):2021–2027

    Article  Google Scholar 

  7. Roemers R, Kluin J, de Heer F, Arrigoni S, Bökenkamp R, van Melle J et al (2018) Surgical correction of supravalvar aortic stenosis: 52 years’ experience. World J Pediatr Congenit Heart Surg 9(2):131–138

    Article  Google Scholar 

  8. Liu H, Gao B, Sun Q, Du X, Pan Y, Zhu Z et al (2017) Surgical strategies and outcomes of congenital supravalvular aortic stenosis. J Card Surg 32(10):652–658

    Article  Google Scholar 

  9. Collins RT 2nd (2013) Cardiovascular disease in Williams syndrome. Circulation 127(21):2125–2134

    Article  Google Scholar 

  10. Imamura M, Prodhan P, Dossey AM, Jaquiss RD (2010) Reoperation after supravalvular aortic stenosis repair. Ann Thorac Surg 90(6):2016–2022

    Article  Google Scholar 

  11. Stamm C, Li J, Ho SY, Redington AN, Anderson RH (1997) The aortic root in supravalvular aortic stenosis: the potential surgical relevance of morphologic findings. J Thorac Cardiovasc Surg 114(1):16–24

    CAS  Article  Google Scholar 

  12. Qian Y, Liu JL, Itatani K, Miyaji K, Umezu M (2010) Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure. Ann Biomed Eng 38(7):2302–2313

    CAS  Article  Google Scholar 

  13. Itatani K, Miyaji K, Qian Y, Liu JL, Miyakoshi T, Murakami A et al (2012) Influence of surgical arch reconstruction methods on single ventricle workload in the Norwood procedure. J Thorac Cardiovasc Surg 144(1):130–138

    Article  Google Scholar 

  14. Fraser CD Jr, Mee RB (1995) Modified Norwood procedure for hypoplastic left heart syndrome. Ann Thorac Surg. 60(6 Suppl):S546–S549

    Article  Google Scholar 

  15. Califano JP, Reinhart-King CA (2010) Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 43(1):79–86

    Article  Google Scholar 

  16. Wu FY, Mondal A, Del Nido PJ, Gauvreau K, Emani SM, Baird CW et al (2019) Long-term surgical prognosis of primary supravalvular aortic stenosis repair. Ann Thorac Surg 108(4):1202–1209

    Article  Google Scholar 

  17. Padalino MA, Frigo AC, Comisso M, Kostolny M, Omeje I, Schreiber C et al (2017) Early and late outcomes after surgical repair of congenital supravalvular aortic stenosis: a European Congenital Heart Surgeons Association multicentric study. Eur J Cardiothorac Surg 52(4):789–797

    Article  Google Scholar 

  18. Fricke TA, d’Udekem Y, Brizard CP, Wheaton G, Weintraub RG, Konstantinov IE (2015) Surgical repair of supravalvular aortic stenosis in children with williams syndrome: a 30-year experience. Ann Thorac Surg 99(4):1335–1341

    Article  Google Scholar 

  19. Kramer P, Absi D, Hetzer R, Photiadis J, Berger F, Alexi-Meskishvili V (2014) Outcome of surgical correction of congenital supravalvular aortic stenosis with two- and three-sinus reconstruction techniques. Ann Thorac Surg 97:1552–6259

    Article  Google Scholar 

  20. Metton O, Ben Ali W, Calvaruso D, Bonnet D, Sidi D, Raisky O et al (2009) Surgical management of supravalvular aortic stenosis: does Brom three-patch technique provide superior results? Ann Thorac Surg 88(2):588–93

    Article  Google Scholar 

  21. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3):177–199

    Article  Google Scholar 

  22. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23

    CAS  Article  Google Scholar 

  23. Gimbrone MA, Topper JN, Nagel T et al (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. In: Atherosclerosis V: the Fifth Saratoga Conference, vol 902, pp 230–240

  24. Eronen M, Peippo M, Hiippala A, Raatikka M, Arvio M, Johansson R et al (2002) Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet 39(8):554–558

    CAS  Article  Google Scholar 

  25. Kececioglu D, Kotthoff S, Vogt J (1993) Williams-Beuren syndrome: a 30-year follow-up of natural and postoperative course. Eur Heart J 14(11):1458–1464

    CAS  Article  Google Scholar 

  26. Giddins NG, Finley JP, Nanton MA, Roy DL (1989) The natural course of supravalvar aortic stenosis and peripheral pulmonary artery stenosis in Williams’s syndrome. Br Heart J 62(4):315–319

    CAS  Article  Google Scholar 

  27. Deo SV, Burkhart HM, Schaff HV, Li Z, Stensrud PE, Olson TM et al (2012) Late outcomes for surgical repair of supravalvar aortic stenosis. Ann Thorac Surg 94(3):854–859

    Article  Google Scholar 

  28. Pham PP, Moller JH, Hills C, Larson V, Pyles L (2009) Cardiac catheterization and operative outcomes from a multicenter consortium for children with williams syndrome. Pediatr Cardiol 30(1):9–14

    Article  Google Scholar 

  29. Deo SV, Burkhart HM, Dearani JA, Schaff HV (2013) Supravalvar aortic stenosis: current surgical approaches and outcomes. Expert Rev Cardiovasc Ther 11(7):879–890

    CAS  Article  Google Scholar 

  30. Peng B, Wang Q (2019) Avoidance of malignant arrhythmia caused by displacement of the right coronary artery ostium in surgical correction of supravalvular aortic stenosis. J Int Med Res 47(11):5702–5710

    Article  Google Scholar 

Download references

Acknowledgements

We express our great gratitude for the support of the Department of Radiology of Shanghai Children’s Medical Center.

Funding

This work was supported by the ‘Research Project of Shanghai Jude Charity.’

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to the content of the article.

Corresponding author

Correspondence to Haibo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the hospital’s ethics committee.

Consent to Participate

Informed consent was waived for the participant.

Consent for Publication

All the authors approved the version to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Hu and Jinlong Liu contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4207 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Liu, J., Jiang, Q. et al. Influence of Surgical Methods on Hemodynamics in Supravalvular Aortic Stenosis: A Computational Hemodynamic Analysis. Pediatr Cardiol 42, 1730–1739 (2021). https://doi.org/10.1007/s00246-021-02657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-021-02657-3

Keywords

  • Supravalvular aortic stenosis
  • Virtual operation
  • Computational fluid dynamics
  • Energy loss
  • Coronary artery