Skip to main content

Advertisement

Log in

Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2022

This article has been updated

Abstract

Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porrello ER, Mahmoud AI, Simpson E et al (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110(1):187–192. https://doi.org/10.1073/pnas.1208863110

    Article  PubMed  Google Scholar 

  3. Cui M, Wang Z, Chen K et al (2020) Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev Cell 53(1):102-116.e8. https://doi.org/10.1016/j.devcel.2020.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aurora AB, Porrello ER, Tan W et al (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124(3):1382–1392. https://doi.org/10.1172/JCI72181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mahmoud AI, Kocabas F, Muralidhar SA et al (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497(7448):249–253. https://doi.org/10.1038/nature12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kocabas F, Zheng J, Thet S et al (2012) Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120(25):4963–4972. https://doi.org/10.1182/blood-2012-05-432260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aksoz M, Turan RD, Albayrak E, Kocabas F (2017) Emerging roles of Meis1 in cardiac regeneration, stem cells, and cancer. Curr Drug Targets 18:181–190. https://doi.org/10.2174/1389450118666170724165514

    Article  CAS  Google Scholar 

  8. Nguyen NUN, Canseco DC, Xiao F et al (2020) A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature 582(7811):271–276. https://doi.org/10.1038/s41586-020-2228-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA (2014) Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9(2):305–311. https://doi.org/10.1038/nprot.2014.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346(1):5–15. https://doi.org/10.1056/NEJMoa012081

    Article  PubMed  Google Scholar 

  11. Canseco DC, Kimura W, Garg S et al (2015) Human ventricular unloading induces cardiomyocyte proliferation. J Am Coll Cardiol 65(9):892–900. https://doi.org/10.1016/j.jacc.2014.12.027

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. https://doi.org/10.1126/science.1164680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Senyo SE, Steinhauser ML, Pizzimenti CL et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436. https://doi.org/10.1038/nature11682

    Article  CAS  PubMed  Google Scholar 

  14. Darehzereshki A, Rubin N, Gamba L et al (2015) Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev Biol 399(1):91–99. https://doi.org/10.1016/j.ydbio.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  15. Quaife-Ryan GA, Sim CB, Ziemann M et al (2017) Multicellular transcriptional analysis of mammalian heart regeneration. Circulation 136(12):1123–1139. https://doi.org/10.1161/CIRCULATIONAHA.117.028252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol Heart Circ Physiol 271(540–545):2183–2189

    Article  Google Scholar 

  17. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28(8):1737–1746. https://doi.org/10.1006/jmcc.1996.0163

    Article  CAS  PubMed  Google Scholar 

  18. Kühn B, Del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13(8):962–969. https://doi.org/10.1038/nm1619

    Article  CAS  PubMed  Google Scholar 

  19. Gemberling M, Karra R, Dickson AL, Poss KD (2015) Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife 4:05871. https://doi.org/10.7554/eLife.05871

    Article  Google Scholar 

  20. Heallen T, Zhang M, Wang J et al (2011) Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332(6028):458–461. https://doi.org/10.1126/science.1199010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engel FB, Hsieh PCH, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103(42):15546–15551. https://doi.org/10.1073/pnas.0607382103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasumarthi KBS, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96(1):110–118. https://doi.org/10.1161/01.RES.0000152326.91223.4F

    Article  CAS  PubMed  Google Scholar 

  23. Kubin T, Pöling J, Kostin S et al (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9(5):420–432. https://doi.org/10.1016/j.stem.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  24. Novoyatleva T, Diehl F, Van Amerongen MJ et al (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85(4):681–690. https://doi.org/10.1093/cvr/cvp360

    Article  CAS  PubMed  Google Scholar 

  25. Beigi F, Schmeckpeper J, Pow-Anpongkul P et al (2013) C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 113(4):372–380. https://doi.org/10.1161/CIRCRESAHA.113.301075

    Article  CAS  PubMed  Google Scholar 

  26. Rochais F, Sturny R, Chao CM et al (2014) FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res 104(3):432–442. https://doi.org/10.1093/cvr/cvu232

    Article  CAS  PubMed  Google Scholar 

  27. Von Harsdorf R, Hauck L, Mehrhof F, Wegenka U, Cardoso MC, Dietz R (1999) E2F–1 overexpression in cardiomyocytes induces downregulation of p21(CIP1) and p27(KIP1) and release of active cyclin-dependent kinases in the presence of insulin-like growth factor I. Circ Res 85(2):128–136. https://doi.org/10.1161/01.RES.85.2.128

    Article  Google Scholar 

  28. Liu N, Bezprozvannaya S, Williams AH et al (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22(23):3242–3254. https://doi.org/10.1101/gad.1738708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL (1990) The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10(7):3709–3716. https://doi.org/10.1128/mcb.10.7.3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agah R, Kirshenbaum LA, Abdellatif M et al (1997) Adenoviral delivery of E2F–1 directs cell cycle reentry and p53- independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 100(11):2722–2728. https://doi.org/10.1172/JCI119817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Von Gise A, Lin Z, Schlegelmilch K et al (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 109(7):2394–2399. https://doi.org/10.1073/pnas.1116136109

    Article  Google Scholar 

  32. D’Uva G, Aharonov A, Lauriola M et al (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17(5):627–638. https://doi.org/10.1038/ncb3149

    Article  CAS  PubMed  Google Scholar 

  33. Cheng RK, Asai T, Tang H et al (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100(12):1741–1748. https://doi.org/10.1161/CIRCRESAHA.107.153544

    Article  CAS  PubMed  Google Scholar 

  34. Bicknell KA, Coxon CH, Brooks G (2004) Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes. Biochem J 382(2):411–416. https://doi.org/10.1042/BJ20031481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campa VM, Gutiérrez-Lanza R, Cerignoli F et al (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183(1):129–141. https://doi.org/10.1083/jcb.200806104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tseng AS, Engel FB, Keating MTT (2006) The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13(9):957–963. https://doi.org/10.1016/j.chembiol.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  37. Piatkowski T, Mühlfeld C, Borchardt T, Braun T (2013) Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components. Stem Cells Dev 22(13):1921–1931. https://doi.org/10.1089/scd.2012.0575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kikuchi K, Holdway JE, Werdich AA et al (2010) Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288):601–605. https://doi.org/10.1038/nature08804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parry TL, Willis MS (2016) Cardiac ubiquitin ligases: their role in cardiac metabolism, autophagy, cardioprotection and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 1862(12):2259–2269. https://doi.org/10.1016/j.bbadis.2016.07.002

    Article  CAS  Google Scholar 

  40. Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H (2002) C-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 3(12):1192–1199. https://doi.org/10.1038/ni855

    Article  CAS  PubMed  Google Scholar 

  41. Murphy MA, Schnall RG, Venter DJ et al (1998) Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 18(8):4872–4882. https://doi.org/10.1128/mcb.18.8.4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rafiq K, Kolpakov MA, Seqqat R et al (2014) C-Cbl inhibition improves cardiac function and survival in response to myocardial ischemia. Circulation 129(20):2031–2043. https://doi.org/10.1161/CIRCULATIONAHA.113.007004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quaife-Ryan GA, Sim CB, Porrello ER, Hudson JE (2016) Resetting the epigenome for heart regeneration. Semin Cell Dev Biol 58:2–13. https://doi.org/10.1016/j.semcdb.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  44. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. https://doi.org/10.1038/nrg3354

    Article  CAS  PubMed  Google Scholar 

  45. Nührenberg TG, Hammann N, Schnick T et al (2015) Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS ONE 10(6):e0131019. https://doi.org/10.1371/journal.pone.0131019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We like to thank to the support by The Scientific and Technological Research Council of Turkey (TÜBİTAK) ARDEB 1001 [#115S185] program. FK is supported by funds provided by EU, BAGEP-2015, ICGEB, Gilead Sciences, and ERA-CVD program. DY has been supported by TÜBİTAK-BİDEB 2209A program. We like to thank Prof. Dr. Bayram Yuksel and Unal Uslu from Yeditepe University for their help in the establishment of tissue sectioning and immunostaining. We would like to thank Dr. Emrah Nikerel from Yeditepe University for their help in bioinformatical and statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.S.A performed neonatal cardiac injuries and performed RT-qPCR, contributed to manuscript. S.N.E performed IHC and cardiac injuries, and contributed to manuscript. S.Y and S.A. contributed to RT-qPCR and neonatal cardiomyocyte culture. A.C. contributed to IHC studies. F.P. performed and contributed to Western blot studies, and manuscript. F.K designed the all experiments and wrote the article. All authors contributed to data analysis and reviewed the manuscript.

Corresponding author

Correspondence to Fatih Kocabas.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest concerning this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been revised due to addition of affiliation.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, G.S., Polat, F., Eren, S.N. et al. Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration. Pediatr Cardiol 42, 1554–1566 (2021). https://doi.org/10.1007/s00246-021-02640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-021-02640-y

Keywords

Navigation