Skip to main content

Advertisement

Log in

Impact of Anesthetic and Ventilation Strategies on Invasive Hemodynamic Measurements in Pediatric Heart Transplant Recipients

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Background

Care of pediatric heart transplant recipients relies upon serial invasive hemodynamic evaluation, generally performed under the artificial conditions created by anesthesia and supportive ventilation.

Objectives

This study aimed to evaluate the hemodynamic impacts of different anesthetic and ventilatory strategies.

Methods

We compared retrospectively the cardiac index, right- and left-sided filling pressures, and pulmonary and systemic vascular resistances of all clinically well and rejection-free heart transplant recipients catheterized from 2005 through 2017. Effects of spontaneous versus positive pressure ventilation and of sedation versus general anesthesia were tested with generalized linear mixed models for repeated measures using robust sandwich estimators of the covariance matrices. Least squared means showed adjusted mean outcome values, controlled for appropriate confounders.

Results

720 catheterizations from 101 recipients met inclusion criteria. Adjusted cardiac index was 3.14 L/min/m2 (95% CI 3.01–3.67) among spontaneously breathing and 2.71 L/min/m2 (95% CI 2.56–2.86) among ventilated recipients (p < 0.0001). With spontaneous breathing, left filling pressures were lower (9.9 vs 11.0 mmHg, p = 0.030) and systemic vascular resistances were higher (24.0 vs 20.5 Woods units, p < 0.0001). After isolating sedated from anesthetized spontaneously breathing patients, the observed differences in filling pressures and resistances emerged as a function of sedation versus general anesthesia rather than of spontaneous versus positive pressure ventilation.

Conclusion

In pediatric heart transplant recipients, positive pressure ventilation reduces cardiac output but does not alter filling pressures or vascular resistances. Moderate sedation yields lower left filling pressures and higher systemic vascular resistances than does general anesthesia. Differences are quantitatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CHLA:

Children’s Hospital of Los Angeles

CI:

Cardiac index

TD:

Thermodilution

RVEDP:

Right ventricular end-diastolic pressure

PCWP:

Pulmonary capillary wedge pressure

PVR:

Pulmonary vascular resistance

SVR:

Systemic vascular resistance

PEEP:

Positive end-expiratory pressure

VO2:

Oxygen consumption

pCO2:

Partial pressure of carbon dioxide

paO2:

Partial pressure of oxygen

References

  1. Buda AJ, Pinsky MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301(9):453–459

    Article  CAS  PubMed  Google Scholar 

  2. Wise RA, Robotham JL, Summer WR (1981) Effects of spontaneous ventilation on the circulation. Lung 159(4):175–186

    Article  CAS  PubMed  Google Scholar 

  3. Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol Respir Environ Exerc Physiol 53(5):1110–1115

    CAS  PubMed  Google Scholar 

  4. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol Respir Environ Exerc Physiol 56(5):1237–1245

    CAS  PubMed  Google Scholar 

  5. Cassidy SS, Wead WB, Seibert GB, Ramanathan M (1987) Changes in left ventricular geometry during spontaneous breathing. J Appl Physiol 63(2):803–811

    Article  CAS  PubMed  Google Scholar 

  6. Shekerdemian L, Bush A, Redington A (1997) Cardiovascular effects of intravenous midazolam after open heart surgery. Arch Dis Child 76(1):57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tyberg JV, Grant DA, Kingma I, Moore TD, Sun Y, Smith ER, Belenkie I (2000) Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics. Respir Physiol 119(2–3):171–179

    Article  CAS  PubMed  Google Scholar 

  8. Pinsky MR (2005) Cardiovascular issues in respiratory care. Chest 128(5 Suppl 2):592S–597S

    Article  PubMed  Google Scholar 

  9. Pinsky MR (2012) Heart lung interactions during mechanical ventilation. Curr Opin Crit Care 18(3):256–260

    Article  PubMed  Google Scholar 

  10. Robotham JL, Scharf SM (1983) Effects of positive and negative pressure ventilation on cardiac performance. Clin Chest Med 4(2):161–187

    Article  CAS  PubMed  Google Scholar 

  11. Young JB, Leon CA, Short HD 3rd, Noon GP, Lawrence EC, Whisennand HH, Pratt CM, Goodman DA, Weilbaecher D, Quinones MA et al (1987) Evolution of hemodynamics after orthotopic heart and heart-lung transplantation: early restrictive patterns persisting in occult fashion. J Heart Transplant 6(1):34–43

    CAS  PubMed  Google Scholar 

  12. Hausdorf G, Banner NR, Mitchell A, Khaghani A, Martin M, Yacoub M (1989) Diastolic function after cardiac and heart-lung transplantation. Br Heart J 62(2):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M (2000) Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 17(2):161–168

    Article  CAS  PubMed  Google Scholar 

  14. Norvell JE, Lower RR (1973) Degeneration and regeneration of the nerves of the heart after transplantation. Transplantation 15(3):337–344

    Article  CAS  PubMed  Google Scholar 

  15. Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27(4):392–396

    Article  CAS  PubMed  Google Scholar 

  16. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, Andersen CB, Angelini A, Berry GJ, Burke MM et al (2005) Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 24(11):1710–1720

    Article  PubMed  Google Scholar 

  17. Tan CD, Baldwin WM 3rd, Rodriguez ER (2007) Update on cardiac transplantation pathology. Arch Pathol Lab Med 131(8):1169–1191

    Article  PubMed  Google Scholar 

  18. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, Madsen J, Parameshwar J, Starling RC, Uber PA (2010) International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 29(7):717–727

    Article  PubMed  Google Scholar 

  19. Fick A (1870) Über die Messung des Blutquantums in der Herzventrikeln. Stahelschen Universitats-Buch Kunsthandlung; Sitzungsberichte der physikalisch-medicinischen Gesellschaftzu Würzburg. pp XVI–XVII.

  20. LaFarge CG, Miettinen OS (1970) The estimation of oxygen consumption. Cardiovasc Res 4(1):23–30

    Article  CAS  PubMed  Google Scholar 

  21. Lundell BP, Casas ML, Wallgren CG (1996) Oxygen consumption in infants and children during heart catheterization. Pediatr Cardiol 17(4):207–213

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Bush A, Schulze-Neick I, Penny DJ, Redington AN, Shekerdemian LS (2003) Measured versus estimated oxygen consumption in ventilated patients with congenital heart disease: the validity of predictive equations. Crit Care Med 31(4):1235–1240

    Article  PubMed  Google Scholar 

  23. Chaturvedi RK, Zidulka AA, Goldberg P, deVarennes B, Iqbal S, Rahme E, Lachapelle K (2008) Use of negative extrathoracic pressure to improve hemodynamics after cardiac surgery. Ann Thorac Surg 85(4):1355–1360

    Article  PubMed  Google Scholar 

  24. Fixler DE, Carrell T, Browne R, Willis K, Miller WW (1974) Oxygen consumption in infants and children during cardiac catheterization under different sedation regimens. Circulation 50(4):788–794

    Article  CAS  PubMed  Google Scholar 

  25. Laitinen PO, Rasanen J (1998) Measured versus predicted oxygen consumption in children with congenital heart disease. Heart 80(6):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rutledge J, Bush A, Shekerdemian L, Schulze-Neick I, Penny D, Cai S, Li J (2010) Validity of the LaFarge equation for estimation of oxygen consumption in ventilated children with congenital heart disease younger than 3 years–a revisit. Am Heart J 160(1):109–114

    Article  PubMed  PubMed Central  Google Scholar 

  27. Seckeler MD, Hirsch R, Beekman RH 3rd, Goldstein BH (2015) A new predictive equation for oxygen consumption in children and adults with congenital and acquired heart disease. Heart 101(7):517–524

    Article  CAS  PubMed  Google Scholar 

  28. Manthous CA, Hall JB, Kushner R, Schmidt GA, Russo G, Wood LD (1995) The effect of mechanical ventilation on oxygen consumption in critically ill patients. Am J Respir Crit Care Med 151(1):210–214

    Article  CAS  PubMed  Google Scholar 

  29. Pauli C, Fakler U, Genz T, Hennig M, Lorenz HP, Hess J (2002) Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med 28(7):947–952

    Article  CAS  PubMed  Google Scholar 

  30. van den Berg PC, Jansen JR, Pinsky MR (2002) Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J Appl Physiol 92(3):1223–1231

    Article  PubMed  Google Scholar 

  31. Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research C (2009) The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg 108(3):795–804

    Article  CAS  PubMed  Google Scholar 

  32. Metzner J, Domino KB (2010) Risks of anesthesia or sedation outside the operating room: the role of the anesthesia care provider. Curr Opin Anaesthesiol 23(4):523–531

    Article  PubMed  Google Scholar 

  33. Melloni C (2007) Anesthesia and sedation outside the operating room: how to prevent risk and maintain good quality. Curr Opin Anaesthesiol 20(6):513–519

    Article  PubMed  Google Scholar 

  34. de Wit F, van Vliet AL, de Wilde RB, Jansen JR, Vuyk J, Aarts LP, de Jonge E, Veelo DP, Geerts BF (2016) The effect of propofol on haemodynamics: cardiac output, venous return, mean systemic filling pressure, and vascular resistances. Br J Anaesth 116(6):784–789

    Article  PubMed  CAS  Google Scholar 

  35. Pensado A, Molins N, Alvarez J (1993) Effects of propofol on mean arterial pressure and systemic vascular resistance during cardiopulmonary bypass. Acta Anaesthesiol Scand 37(5):498–501

    Article  CAS  PubMed  Google Scholar 

  36. Rodig G, Keyl C, Wiesner G, Philipp A, Hobbhahn J (1996) Effects of sevoflurane and isoflurane on systemic vascular resistance: use of cardiopulmonary bypass as a study model. Br J Anaesth 76(1):9–12

    Article  CAS  PubMed  Google Scholar 

  37. Ebert TJ, Harkin CP, Muzi M (1995) Cardiovascular responses to sevoflurane: a review. Anesth Analg 81(6 Suppl):S11–22

    Article  CAS  PubMed  Google Scholar 

  38. Ewalenko P, Stefanidis C, Holoye A, Brimioulle S, Naeije R (1993) Pulmonary vascular impedance vs resistance in hypoxic and hyperoxic dogs: effects of propofol and isoflurane. J Appl Physiol 74(5):2188–2193

    Article  CAS  PubMed  Google Scholar 

  39. Eisenkraft JB (1990) Effects of anaesthetics on the pulmonary circulation. Br J Anaesth 65(1):63–78

    Article  CAS  PubMed  Google Scholar 

  40. Rosow C, Manberg PJ (2001) Bispectral index monitoring. Anesthesiol Clin North Am 19(4):947–966

    Article  CAS  PubMed  Google Scholar 

  41. Gravel NR, Searle NR, Taillefer J, Carrier M, Roy M, Gagnon L (1999) Comparison of the hemodynamic effects of sevoflurane anesthesia induction and maintenance vs TIVA in CABG surgery. Can J Anaesth 46(3):240–246

    Article  CAS  PubMed  Google Scholar 

  42. El Dib R, Guimaraes Pereira JE, Agarwal A, Gomaa H, Ayala AP, Botan AG, Braz LG, de Oliveira LD, Lopes LC, Mathew PJ (2017) Inhalation versus intravenous anaesthesia for adults undergoing on-pump or off-pump coronary artery bypass grafting: A systematic review and meta-analysis of randomized controlled trials. J Clin Anesth 40:127–138

    Article  PubMed  CAS  Google Scholar 

  43. Ruzman T, Simurina T, Gulam D, Ruzman N, Miskulin M (2017) Sevoflurane preserves regional cerebral oxygen saturation better than propofol: Randomized controlled trial. J Clin Anesth 36:110–117

    Article  CAS  PubMed  Google Scholar 

  44. Naeije R, Lejeune P, Leeman M, Melot C, Deloof T (1989) Effects of propofol on pulmonary and systemic arterial pressure-flow relationships in hyperoxic and hypoxic dogs. Br J Anaesth 62(5):532–539

    Article  CAS  PubMed  Google Scholar 

  45. Bjertnaes LJ (1982) Intravenous versus inhalation anesthesia—pulmonary effects. Acta Anaesthesiol Scand Suppl 75:18–24

    Article  CAS  PubMed  Google Scholar 

  46. Giesen LA, White M, Tulloh RM (2015) Comparison of the effect of inhaled anaesthetic with intravenous anaesthetic on pulmonary vascular resistance measurement during cardiac catheterisation. Cardiol Young 25(2):368–372

    Article  PubMed  Google Scholar 

  47. Robotham JL, Lixfeld W, Holland L, MacGregor D, Bromberger-Barnea B, Permutt S, Rabson JL (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121(4):677–683

    CAS  PubMed  Google Scholar 

  48. Dorinsky PM, Whitcomb ME (1983) The effect of PEEP on cardiac output. Chest 84(2):210–216

    CAS  PubMed  Google Scholar 

Download references

Funding

Supported by the Department of Anesthesiology & Critical Care and by the Heart Institute at the Children’s Hospital of Los Angeles, Los Angeles, CA, USA. The authors have no personal or financial relationships or affiliations that could influence or bias their decisions, work, or manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Stohl.

Ethics declarations

Conflict of interest

All authors participated in the study design and manuscript preparation. No author reports a conflict of interest or relationship with industry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stohl, S., Klein, M.J., Ross, P.A. et al. Impact of Anesthetic and Ventilation Strategies on Invasive Hemodynamic Measurements in Pediatric Heart Transplant Recipients. Pediatr Cardiol 41, 962–971 (2020). https://doi.org/10.1007/s00246-020-02344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-020-02344-9

Keywords

Navigation