Skip to main content
Log in

Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Human pluripotent stem cells (hPSCs) offer a multifaceted platform to study cardiac developmental biology, understand disease mechanisms, and develop novel therapies. Remarkable progress over the last two decades has led to methods to obtain highly pure hPSC-derived cardiomyocytes (hPSC-CMs) with reasonable ease and scalability. Nevertheless, a major bottleneck for the translational application of hPSC-CMs is their immature phenotype, resembling that of early fetal cardiomyocytes. Overall, bona fide maturation of hPSC-CMs represents one of the most significant goals facing the field today. Developmental biology studies have been pivotal in understanding the mechanisms to differentiate hPSC-CMs. Similarly, evaluation of developmental cues such as electrical and mechanical activities or neurohormonal and metabolic stimulations revealed the importance of these pathways in cardiomyocyte physiological maturation. Those signals cooperate and dictate the size and the performance of the developing heart. Likewise, this orchestra of stimuli is important in promoting hPSC-CM maturation, as demonstrated by current in vitro maturation approaches. Different shades of adult-like phenotype are achieved by prolonging the time in culture, electromechanical stimulation, patterned substrates, microRNA manipulation, neurohormonal or metabolic stimulation, and generation of human-engineered heart tissue (hEHT). However, mirroring this extremely dynamic environment is challenging, and reproducibility and scalability of these approaches represent the major obstacles for an efficient production of mature hPSC-CMs. For this reason, understanding the pattern behind the mechanisms elicited during the late gestational and early postnatal stages not only will provide new insights into postnatal development but also potentially offer new scalable and efficient approaches to mature hPSC-CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  PubMed  Google Scholar 

  4. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240

    CAS  PubMed  Google Scholar 

  6. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    CAS  PubMed  Google Scholar 

  7. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 109:E1848–1857

    CAS  PubMed  Google Scholar 

  8. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–41

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE (2017) Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc 12:15–31

    CAS  PubMed  Google Scholar 

  10. Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, Keller GM (2017) Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol 35:56–68

    CAS  PubMed  Google Scholar 

  11. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon RT, Stamatoyannopoulos J, Murry CE (2012) A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151:221–232

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertero A, Pawlowski M, Ortmann D, Snijders K, Yiangou L, Cardoso M, de Brito S, Brown WG Bernard, Cooper JD, Giacomelli E, Gambardella L, Hannan NR, Iyer D, Sampaziotis F, Serrano F, Zonneveld MC, Sinha S, Kotter M, Vallier L (2016) Optimized inducible shRNA and CRISPR/Cas9 platforms for in vitro studies of human development using hPSCs. Development 143:4405–4418

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Doherty KR, Talbert DR, Trusk PB, Moran DM, Shell SA, Bacus S (2015) Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicol Appl Pharmacol 285:51–60

    CAS  PubMed  Google Scholar 

  14. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4:107–116

    CAS  PubMed  Google Scholar 

  15. Ben Jehuda R, Barad L (2016) Patient specific induced pluripotent stem cell-derived cardiomyocytes for drug development and screening in catecholaminergic polymorphic ventricular tachycardia. J Atr Fibrillation 9:1423

    PubMed  Google Scholar 

  16. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229

    CAS  PubMed  Google Scholar 

  17. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O'Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    CAS  PubMed  Google Scholar 

  18. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Blinova K, Dang Q, Millard D, Smith G, Pierson J, Guo L, Brock M, Lu HR, Kraushaar U, Zeng H, Shi H, Zhang X, Sawada K, Osada T, Kanda Y, Sekino Y, Pang L, Feaster TK, Kettenhofen R, Stockbridge N, Strauss DG, Gintant G (2018) International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep 24:3582–3592

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mordwinkin NM, Burridge PW, Wu JC (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30

    PubMed  Google Scholar 

  22. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, Couture L, Vogel KW, Astley CA, Baldessari A, Ogle J, Don CW, Steinberg ZL, Seslar SP, Tuck SA, Tsuchida H, Naumova AV, Dupras SK, Lyu MS, Lee J, Hailey DW, Reinecke H, Pabon L, Fryer BH, MacLellan WR, Thies RS, Murry CE (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:597–605

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertero A, Murry CE (2018) Hallmarks of cardiac regeneration. Nat Rev Cardiol 15:579–580

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:388–391

    CAS  PubMed  Google Scholar 

  25. Tan SH, Ye L (2018) Maturation of pluripotent stem cell-derived cardiomyocytes: a critical step for drug development and cell therapy. J Cardiovasc Transl Res 11:375–392

    PubMed  Google Scholar 

  26. Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114:511–523

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285:H2355–2363

    CAS  PubMed  Google Scholar 

  28. Synnergren J, Ameen C, Jansson A, Sartipy P (2012) Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiol Genomics 44:245–258

    CAS  PubMed  Google Scholar 

  29. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    CAS  PubMed  Google Scholar 

  30. Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13:3185–3190

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM (2014) Thyroid hormone action in postnatal heart development. Stem Cell Res 13:582–591

    CAS  PubMed  Google Scholar 

  32. Liggins GC (1994) The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev 6:141–150

    CAS  PubMed  Google Scholar 

  33. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296–304

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tonnessen T, Kryshtal DO, Louch WE, Knollmann BC (2017) Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 121:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Uosaki H, Taguchi YH (2016) Comparative gene expression analysis of mouse and human cardiac maturation. Genomics Proteomics Bioinform 14:207–215

    Google Scholar 

  36. Garbern JC, Mummery CL, Lee RT (2013) Model systems for cardiovascular regenerative biology. Cold Spring Harb Perspect Med 3:a014019

    PubMed  PubMed Central  Google Scholar 

  37. Sylva M, van den Hoff MJ, Moorman AF (2014) Development of the human heart. Am J Med Genet A 164A:1347–1371

    PubMed  Google Scholar 

  38. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    CAS  PubMed  Google Scholar 

  39. Rana MS, Christoffels VM, Moorman AF (2013) A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 207:588–615

    CAS  Google Scholar 

  40. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    CAS  PubMed  Google Scholar 

  41. Gong H, Lyu X, Wang Q, Hu M, Zhang X (2017) Endothelial to mesenchymal transition in the cardiovascular system. Life Sci 184:95–102

    CAS  PubMed  Google Scholar 

  42. Lincoln J, Garg V (2014) Etiology of valvular heart disease-genetic and developmental origins. Circ J 78:1801–1807

    CAS  PubMed  Google Scholar 

  43. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    CAS  PubMed  Google Scholar 

  44. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA (2004) Right ventricular myocardium derives from the anterior heart field. Circ Res 95:261–268

    CAS  PubMed  Google Scholar 

  45. Lavine KJ, Ornitz DM (2008) Fibroblast growth factors and Hedgehogs: at the heart of the epicardial signaling center. Trends Genet 24:33–40

    CAS  PubMed  Google Scholar 

  46. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stevens SM, von Gise A, VanDusen N, Zhou B, Pu WT (2016) Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev Biol 413:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bressan M, Liu G, Mikawa T (2013) Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340:744–748

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang X, Evans SM, Sun Y (2017) Development of the cardiac pacemaker. Cell Mol Life Sci 74:1247–1259

    CAS  PubMed  Google Scholar 

  50. Kelder TP, Vicente-Steijn R, Harryvan TJ, Kosmidis G, Gittenberger-de Groot AC, Poelmann RE, Schalij MJ, DeRuiter MC, Jongbloed MR (2015) The sinus venosus myocardium contributes to the atrioventricular canal: potential role during atrioventricular node development? J Cell Mol Med 19:1375–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254

    CAS  PubMed  Google Scholar 

  52. Paff GH, Boucek RJ, Harrell TC (1968) Observations on the development of the electrocardiogram. Anat Rec 160:575–582

    CAS  PubMed  Google Scholar 

  53. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753

    CAS  PubMed  Google Scholar 

  54. Giovannone S, Remo BF, Fishman GI (2012) Channeling diversity: gap junction expression in the heart. Heart Rhythm 9:1159–1162

    PubMed  Google Scholar 

  55. Moorman AF, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83:1223–1267

    CAS  PubMed  Google Scholar 

  56. Mohan RA, Mommersteeg MTM, Dominguez JN, Choquet C, Wakker V, de Gier-de Vries C, Boink GJJ, Boukens BJ, Miquerol L, Verkerk AO, Christoffels VM (2018) Embryonic Tbx3(+) cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development 145:dev167361

    PubMed  Google Scholar 

  57. Mohan RA, Boukens BJ, Christoffels VM (2018) Developmental origin of the cardiac conduction system: insight from lineage tracing. Pediatr Cardiol 39:1107–1114

    PubMed  PubMed Central  Google Scholar 

  58. Plein A, Fantin A, Ruhrberg C (2015) Neural crest cells in cardiovascular development. Curr Top Dev Biol 111:183–200

    CAS  PubMed  Google Scholar 

  59. Manner J (2009) The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat 22:21–35

    PubMed  Google Scholar 

  60. Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    CAS  PubMed  Google Scholar 

  61. Del Monte-Nieto G, Ramialison M, Adam AAS, Wu B, Aharonov A, D'Uva G, Bourke LM, Pitulescu ME, Chen H, de la Pompa JL, Shou W, Adams RH, Harten SK, Tzahor E, Zhou B, Harvey RP (2018) Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557:439–445

    PubMed  Google Scholar 

  62. Zhang W, Chen H, Qu X, Chang CP, Shou W (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet C 163C:144–156

    Google Scholar 

  63. Christoffels VM, Habets PE, Franco D, Campione M, de Jong F, Lamers WH, Bao ZZ, Palmer S, Biben C, Harvey RP, Moorman AF (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278

    CAS  PubMed  Google Scholar 

  64. Lunkenheimer PP, Redmann K, Kling N, Jiang X, Rothaus K, Cryer CW, Wubbeling F, Niederer P, Heitz PU, Ho SY, Anderson RH (2006) Three-dimensional architecture of the left ventricular myocardium. Anat Rec A 288:565–578

    Google Scholar 

  65. Sosnovik DE, Geva T (2018) Imaging the Microstructure of the Human Fetal Heart. Circ Cardiovasc Imaging 11:e008298

    PubMed  PubMed Central  Google Scholar 

  66. McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462:89–104

    CAS  PubMed  Google Scholar 

  67. Lindsey SE, Butcher JT, Yalcin HC (2014) Mechanical regulation of cardiac development. Front Physiol 5:318

    PubMed  PubMed Central  Google Scholar 

  68. Granados-Riveron JT, Brook JD (2012) The impact of mechanical forces in heart morphogenesis. Circ Cardiovasc Genet 5:132–142

    CAS  PubMed  Google Scholar 

  69. Struijk PC, Mathews VJ, Loupas T, Stewart PA, Clark EB, Steegers EA, Wladimiroff JW (2008) Blood pressure estimation in the human fetal descending aorta. Ultrasound Obstet Gynecol 32:673–681

    CAS  PubMed  Google Scholar 

  70. Damon BJ, Remond MC, Bigelow MR, Trusk TC, Xie W, Perucchio R, Sedmera D, Denslow S, Thompson RP (2009) Patterns of muscular strain in the embryonic heart wall. Dev Dyn 238:1535–1546

    PubMed  PubMed Central  Google Scholar 

  71. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    CAS  PubMed  Google Scholar 

  72. Sedmera D, Hu N, Weiss KM, Keller BB, Denslow S, Thompson RP (2002) Cellular changes in experimental left heart hypoplasia. Anat Rec 267:137–145

    PubMed  Google Scholar 

  73. MacGrogan D, Munch J, de la Pompa JL (2018) Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 15:685–704

    PubMed  Google Scholar 

  74. Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, Garratt AN, Birchmeier C, Zhou M, Hartley L, Robb L, Feneley MP, Fatkin D, Harvey RP (2010) Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res 107:715–727

    CAS  PubMed  Google Scholar 

  75. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, Chen Z, Yang Z, Schneider MD, Chien KR, Conway SJ, Yoder MC, Haneline LS, Franco D, Shou W (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kochilas LK, Li J, Jin F, Buck CA, Epstein JA (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45:635–642

    CAS  PubMed  Google Scholar 

  77. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    CAS  PubMed  Google Scholar 

  78. Veille JC, Hanson R, Sivakoff M, Hoen H, Ben-Ami M (1993) Fetal cardiac size in normal, intrauterine growth retarded, and diabetic pregnancies. Am J Perinatol 10:275–279

    CAS  PubMed  Google Scholar 

  79. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140

    CAS  PubMed  Google Scholar 

  80. Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188:49–56

    CAS  PubMed  Google Scholar 

  81. Wiberg-Itzel E, Lipponer C, Norman M, Herbst A, Prebensen D, Hansson A, Bryngelsson AL, Christoffersson M, Sennstrom M, Wennerholm UB, Nordstrom L (2008) Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicentre trial. BMJ 336:1284–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D (2014) Metabolic gene profile in early human fetal heart development. Mol Hum Reprod 20:690–700

    CAS  PubMed  Google Scholar 

  83. Patterson AJ, Zhang L (2010) Hypoxia and fetal heart development. Curr Mol Med 10:653–666

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Krishnan J, Ahuja P, Bodenmann S, Knapik D, Perriard E, Krek W, Perriard JC (2008) Essential role of developmentally activated hypoxia-inducible factor 1alpha for cardiac morphogenesis and function. Circ Res 103:1139–1146

    CAS  PubMed  Google Scholar 

  85. Menendez-Montes I, Escobar B, Palacios B, Gomez MJ, Izquierdo-Garcia JL, Flores L, Jimenez-Borreguero LJ, Aragones J, Ruiz-Cabello J, Torres M, Martin-Puig S (2016) Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell 39:724–739

    CAS  PubMed  Google Scholar 

  86. Hillman NH, Kallapur SG, Jobe AH (2012) Physiology of transition from intrauterine to extrauterine life. Clin Perinatol 39:769–783

    PubMed  PubMed Central  Google Scholar 

  87. Jett PL, Samuels MH, McDaniel PA, Benda GI, Lafranchi SH, Reynolds JW, Hanna CE (1997) Variability of plasma cortisol levels in extremely low birth weight infants. J Clin Endocrinol Metab 82:2921–2925

    CAS  PubMed  Google Scholar 

  88. Asakura H (2004) Fetal and neonatal thermoregulation. J Nippon Med Sch 71:360–370

    CAS  PubMed  Google Scholar 

  89. Kim MY, Eiby YA, Lumbers ER, Wright LL, Gibson KJ, Barnett AC, Lingwood BE (2014) Effects of glucocorticoid exposure on growth and structural maturation of the heart of the preterm piglet. PLoS ONE 9:e93407

    PubMed  PubMed Central  Google Scholar 

  90. Rog-Zielinska EA, Craig MA, Manning JR, Richardson RV, Gowans GJ, Dunbar DR, Gharbi K, Kenyon CJ, Holmes MC, Hardie DG, Smith GL, Chapman KE (2015) Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: a role for PGC-1alpha. Cell Death Differ 22:1106–1116

    CAS  PubMed  Google Scholar 

  91. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    PubMed  Google Scholar 

  92. Fisher DA (2008) Thyroid system immaturities in very low birth weight premature infants. Semin Perinatol 32:387–397

    PubMed  Google Scholar 

  93. Davis PJ, Goglia F, Leonard JL (2016) Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12:111–121

    CAS  PubMed  Google Scholar 

  94. Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart. Thyroid 12:459–466

    CAS  PubMed  Google Scholar 

  95. Ratajczak P, Oliviero P, Marotte F, Kolar F, Ostadal B, Samuel JL (1985) (2005) Expression and localization of caveolins during postnatal development in rat heart: implication of thyroid hormone. J Appl Physiol 99:244–251

    Google Scholar 

  96. Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J, Smith M, Gillett E, Muroy SE, Schmid T, Wilson E, Field KA, Reeder DM, Maden M, Yartsev MM, Wolfgang MJ, Grutzner F, Scanlan TS, Szweda LI, Buffenstein R, Hu G, Flamant F, Olgin JE, Huang GN (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–188

    CAS  PubMed  Google Scholar 

  97. Castello A, Rodriguez-Manzaneque JC, Camps M, Perez-Castillo A, Testar X, Palacin M, Santos A, Zorzano A (1994) Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem 269:5905–5912

    CAS  PubMed  Google Scholar 

  98. Jones CT, Rolph TP (1985) Metabolism during fetal life: a functional assessment of metabolic development. Physiol Rev 65:357–430

    CAS  PubMed  Google Scholar 

  99. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    CAS  PubMed  Google Scholar 

  100. Alzaree FA, AbuShady MM, Atti MA, Fathy GA, Galal EM, Ali A, Elias TR (2019) Effect of early breast milk nutrition on serum insulin-like growth factor-1 in preterm infants. Open Access Maced J Med Sci 7:77–81

    PubMed  PubMed Central  Google Scholar 

  101. Hellstrom A, Ley D, Hansen-Pupp I, Hallberg B, Lofqvist C, van Marter L, van Weissenbruch M, Ramenghi LA, Beardsall K, Dunger D, Hard AL, Smith LE (2016) Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr 105:576–586

    PubMed  PubMed Central  Google Scholar 

  102. Clemmons DR (2012) Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol Metab Clin North Am 41:425–443, vii–viii

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fowden AL (1992) The role of insulin in fetal growth. Early Hum Dev 29:177–181

    CAS  PubMed  Google Scholar 

  104. Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, Tandon NN, Van Der Vusse GJ, Bonen A, Glatz JF (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51:3113–3119

    CAS  PubMed  Google Scholar 

  105. Colao A, Marzullo P, Di Somma C, Lombardi G (2001) Growth hormone and the heart. Clin Endocrinol (Oxf) 54:137–154

    CAS  Google Scholar 

  106. Heron-Milhavet L, Haluzik M, Yakar S, Gavrilova O, Pack S, Jou WC, Ibrahimi A, Kim H, Hunt D, Yau D, Asghar Z, Joseph J, Wheeler MB, Abumrad NA, LeRoith D (2004) Muscle-specific overexpression of CD36 reverses the insulin resistance and diabetes of MKR mice. Endocrinology 145:4667–4676

    CAS  PubMed  Google Scholar 

  107. Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, Koike A, Nogami A, Marumo F (1993) Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 87:1715–1721

    CAS  PubMed  Google Scholar 

  108. Hashima JN, Rogers V, Langley SM, Ashraf M, Sahn DJ, Ohtonen P, Davis LE, Hohimer AR, Rasanen J (2015) Fetal ventricular interactions and wall mechanics during ductus arteriosus occlusion in a sheep model. Ultrasound Med Biol 41:1020–1028

    PubMed  PubMed Central  Google Scholar 

  109. Heymann MA, Rudolph AM (1975) Control of the ductus arteriosus. Physiol Rev 55:62–78

    CAS  PubMed  Google Scholar 

  110. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD (2016) Revisiting cardiac cellular composition. Circ Res 118:400–409

    CAS  PubMed  Google Scholar 

  111. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  112. De Smedt MC, Visser GH, Meijboom EJ (1987) Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation. Am J Cardiol 60:338–342

    PubMed  Google Scholar 

  113. Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, Cutfield W, Williams MJ, Harrington H, Moffitt TE, Caspi A, Milne B, Poulton R (2015) Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension 66:1108–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, Kusanovic JP, Balasubramaniam M, Chaiworapongsa T, Vaisbuch E, Espinoza J, Gotsch F, Goncalves LF, Lee W (2011) Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol 205(76):e71–e10

    Google Scholar 

  115. Nagasawa H (2014) Evaluation of left ventricular volumes in the early neonatal period using three-dimensional echocardiography. Cardiol Young 24:685–693

    PubMed  Google Scholar 

  116. Qu Y, Boutjdir M (2001) Gene expression of SERCA2a and L- and T-type Ca channels during human heart development. Pediatr Res 50:569–574

    CAS  PubMed  Google Scholar 

  117. Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, Hofmann F, Ludwig A (2003) The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA 100:15235–15240

    CAS  PubMed  Google Scholar 

  118. Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR (2014) HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64:745–756

    CAS  PubMed  Google Scholar 

  119. Yaniv Y, Lakatta EG (2013) Pacemaker gene mutations, bradycardia, arrhythmias and the coupled clock theory. J Cardiovasc Electrophysiol 24:E28–29

    PubMed  Google Scholar 

  120. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    CAS  PubMed  Google Scholar 

  121. Sizarov A, Devalla HD, Anderson RH, Passier R, Christoffels VM, Moorman AF (2011) Molecular analysis of patterning of conduction tissues in the developing human heart. Circ Arrhythm Electrophysiol 4:532–542

    PubMed  Google Scholar 

  122. Zorn-Pauly K, Schaffer P, Pelzmann B, Bernhart E, Lang P, Zink M, Machler H, Rigler B, Koidl B (2003) A hyperpolarization activated inward current (If) is present in infant ventricular myocytes. Basic Res Cardiol 98:362–366

    CAS  PubMed  Google Scholar 

  123. Song GL, Tang M, Liu CJ, Luo HY, Liang HM, Hu XW, Xi JY, Gao LL, Fleischmann B, Hescheler J (2002) Developmental changes in functional expression and beta-adrenergic regulation of I(f) in the heart of mouse embryo. Cell Res 12:385–394

    PubMed  Google Scholar 

  124. Javorka K, Lehotska Z, Kozar M, Uhrikova Z, Kolarovszki B, Javorka M, Zibolen M (2017) Heart rate variability in newborns. Physiol Res 66:S203–S214

    CAS  PubMed  Google Scholar 

  125. Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E, Lam K, Coronel R, de Bakker JM, Tan HL (2007) Pacemaker current (I(f)) in the human sinoatrial node. Eur Heart J 28:2472–2478

    PubMed  Google Scholar 

  126. Qu Y, Ghatpande A, El-Sherif N, Boutjdir M (2000) Gene expression of Na+/Ca2+ exchanger during development in human heart. Cardiovasc Res 45:866–873

    CAS  PubMed  Google Scholar 

  127. Harrell MD, Harbi S, Hoffman JF, Zavadil J, Coetzee WA (2007) Large-scale analysis of ion channel gene expression in the mouse heart during perinatal development. Physiol Genomics 28:273–283

    CAS  PubMed  Google Scholar 

  128. Rosemblit N, Moschella MC, Ondriasova E, Gutstein DE, Ondrias K, Marks AR (1999) Intracellular calcium release channel expression during embryogenesis. Dev Biol 206:163–177

    CAS  PubMed  Google Scholar 

  129. Kapoor N, Tran A, Kang J, Zhang R, Philipson KD, Goldhaber JI (2015) Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells. J Physiol 593:2649–2663

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kato Y, Masumiya H, Agata N, Tanaka H, Shigenobu K (1996) Developmental changes in action potential and membrane currents in fetal, neonatal and adult guinea-pig ventricular myocytes. J Mol Cell Cardiol 28:1515–1522

    CAS  PubMed  Google Scholar 

  131. Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS (1996) Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 78:15–25

    CAS  PubMed  Google Scholar 

  132. Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP, Schrader L, Martin JF, Chen Y (2015) A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development 142:2521–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kuwahara K, Saito Y, Takano M, Arai Y, Yasuno S, Nakagawa Y, Takahashi N, Adachi Y, Takemura G, Horie M, Miyamoto Y, Morisaki T, Kuratomi S, Noma A, Fujiwara H, Yoshimasa Y, Kinoshita H, Kawakami R, Kishimoto I, Nakanishi M, Usami S, Saito Y, Harada M, Nakao K (2003) NRSF regulates the fetal cardiac gene program and maintains normal cardiac structure and function. EMBO J 22:6310–6321

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Niwa N, Yasui K, Opthof T, Takemura H, Shimizu A, Horiba M, Lee JK, Honjo H, Kamiya K, Kodama I (2004) Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol 286:H2257–2263

    CAS  PubMed  Google Scholar 

  135. Nuss HB, Marban E (1994) Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture. J Physiol 479(Pt 2):265–279

    PubMed  PubMed Central  Google Scholar 

  136. Hartman ME, Liu Y, Zhu WZ, Chien WM, Weldy CS, Fishman GI, Laflamme MA, Chin MT (2014) Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias. FASEB J 28:3007–3015

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Khandekar A, Springer S, Wang W, Hicks S, Weinheimer C, Diaz-Trelles R, Nerbonne JM, Rentschler S (2016) Notch-mediated epigenetic regulation of voltage-gated potassium currents. Circ Res 119:1324–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Siedner S, Kruger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfitzer G, Stehle R (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548:493–505

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513

    CAS  PubMed  Google Scholar 

  140. Bertero A, Fields PA, Ramani V, Bonora G, Yardimci GG, Reinecke H, Pabon L, Noble WS, Shendure J, Murry CE (2019) Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nat Commun 10:1538

    PubMed  PubMed Central  Google Scholar 

  141. Palmer BM (2005) Thick filament proteins and performance in human heart failure. Heart Fail Rev 10:187–197

    CAS  PubMed  Google Scholar 

  142. Mahdavi V, Lompre AM, Chambers AP, Nadal-Ginard B (1984) Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability. Eur Heart J 5(Suppl F):181–191

    CAS  PubMed  Google Scholar 

  143. Hasenfuss G, Mulieri LA, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, Alpert NR (1991) Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ Res 68:836–846

    CAS  PubMed  Google Scholar 

  144. Gorza L, Ausoni S, Merciai N, Hastings KE, Schiaffino S (1993) Regional differences in troponin I isoform switching during rat heart development. Dev Biol 156:253–264

    CAS  PubMed  Google Scholar 

  145. Westfall MV, Rust EM, Metzger JM (1997) Slow skeletal troponin I gene transfer, expression, and myofilament incorporation enhances adult cardiac myocyte contractile function. Proc Natl Acad Sci USA 94:5444–5449

    CAS  PubMed  Google Scholar 

  146. Noorman M, van der Heyden MA, van Veen TA, Cox MG, Hauer RN, de Bakker JM, van Rijen HV (2009) Cardiac cell-cell junctions in health and disease: Electrical versus mechanical coupling. J Mol Cell Cardiol 47:23–31

    CAS  PubMed  Google Scholar 

  147. Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR (1994) Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90:713–725

    CAS  PubMed  Google Scholar 

  148. Wang Q, Lin JL, Chan SY, Lin JJ (2013) The Xin repeat-containing protein, mXinbeta, initiates the maturation of the intercalated discs during postnatal heart development. Dev Biol 374:264–280

    CAS  PubMed  Google Scholar 

  149. Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441

    CAS  PubMed  Google Scholar 

  150. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W, Lisanti MP (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    CAS  PubMed  Google Scholar 

  151. Fu Y, Hong T (2016) BIN1 regulates dynamic t-tubule membrane. Biochim Biophys Acta 1863:1839–1847

    CAS  PubMed  Google Scholar 

  152. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XH (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988

    PubMed  PubMed Central  Google Scholar 

  153. Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PM (2016) Myofilament calcium sensitivity: role in regulation of in vivo cardiac contraction and relaxation. Front Physiol 7:562

    PubMed  PubMed Central  Google Scholar 

  154. Wiegerinck RF, Cojoc A, Zeidenweber CM, Ding G, Shen M, Joyner RW, Fernandez JD, Kanter KR, Kirshbom PM, Kogon BE, Wagner MB (2009) Force frequency relationship of the human ventricle increases during early postnatal development. Pediatr Res 65:414–419

    PubMed  PubMed Central  Google Scholar 

  155. Holubarsch C, Ludemann J, Wiessner S, Ruf T, Schulte-Baukloh H, Schmidt-Schweda S, Pieske B, Posival H, Just H (1998) Shortening versus isometric contractions in isolated human failing and non-failing left ventricular myocardium: dependency of external work and force on muscle length, heart rate and inotropic stimulation. Cardiovasc Res 37:46–57

    CAS  PubMed  Google Scholar 

  156. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Muller MJ (2010) Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr 92:1369–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Stepanov V, Mateo P, Gillet B, Beloeil JC, Lechene P, Hoerter JA (1997) Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart. Am J Physiol 273:C1397–1408

    CAS  PubMed  Google Scholar 

  158. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    CAS  PubMed  Google Scholar 

  159. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    CAS  PubMed  Google Scholar 

  160. Girard J, Ferre P, Pegorier JP, Duee PH (1992) Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev 72:507–562

    CAS  PubMed  Google Scholar 

  161. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60:49–74

    Google Scholar 

  162. Werner JC, Sicard RE, Schuler HG (1989) Palmitate oxidation by isolated working fetal and newborn pig hearts. Am J Physiol 256:E315–321

    CAS  PubMed  Google Scholar 

  163. An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B (2005) The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab 288:E246–253

    CAS  PubMed  Google Scholar 

  164. Makinde AO, Gamble J, Lopaschuk GD (1997) Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res 80:482–489

    CAS  PubMed  Google Scholar 

  165. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A (1994) Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269:25871–25878

    CAS  PubMed  Google Scholar 

  166. Piquereau J, Novotova M, Fortin D, Garnier A, Ventura-Clapier R, Veksler V, Joubert F (2010) Postnatal development of mouse heart: formation of energetic microdomains. J Physiol 588:2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, Attie AD, Muoio DM, Kelly DP (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114:626–636

    CAS  PubMed  Google Scholar 

  169. Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23:459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Papanicolaou KN, Kikuchi R, Ngoh GA, Coughlan KA, Dominguez I, Stanley WC, Walsh K (2012) Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circ Res 111:1012–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wilding JR, Joubert F, de Araujo C, Fortin D, Novotova M, Veksler V, Ventura-Clapier R (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575:191–200

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271:H2183–2189

    CAS  PubMed  Google Scholar 

  173. Adler CP, Friedburg H (1986) Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J Mol Cell Cardiol 18:39–53

    CAS  PubMed  Google Scholar 

  174. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR, Anversa P (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28:1463–1477

    CAS  PubMed  Google Scholar 

  176. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 110:1446–1451

    CAS  PubMed  Google Scholar 

  177. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87:521–544

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497:249–253

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ebelt H, Zhang Y, Kampke A, Xu J, Schlitt A, Buerke M, Muller-Werdan U, Werdan K, Braun T (2008) E2F2 expression induces proliferation of terminally differentiated cardiomyocytes in vivo. Cardiovasc Res 80:219–226

    CAS  PubMed  Google Scholar 

  180. Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT (2015) Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 116:35–45

    CAS  PubMed  Google Scholar 

  181. Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tonjes M, Dunkel I, Sperling SR (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 7:e1001313

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang J, Liu S, Heallen T, Martin JF (2018) The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 15:672–684

    CAS  PubMed  Google Scholar 

  183. Ikeda S, Sadoshima J (2016) Regulation of myocardial cell growth and death by the Hippo pathway. Circ J 80:1511–1519

    CAS  PubMed  Google Scholar 

  184. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381

    CAS  PubMed  Google Scholar 

  185. Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G, Gutierrez MI, Collesi C, Licastro D, Zentilin L, Mano M, Zacchigna S, Vendruscolo M, Marsili M, Samal A, Giacca M (2019) Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep 27(9):2759–2771.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF (2013) Hippo signaling impedes adult heart regeneration. Development 140:4683–4690

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, Segura A, Willerson JT, Martin JF (2017) Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550:260–264

    PubMed  PubMed Central  Google Scholar 

  189. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25:161–170

    Google Scholar 

  190. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kadota S, Pabon L, Reinecke H, Murry CE (2017) In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep 8:278–289

    CAS  Google Scholar 

  192. Cho GS, Lee DI, Tampakakis E, Murphy S, Andersen P, Uosaki H, Chelko S, Chakir K, Hong I, Seo K, Chen HV, Chen X, Basso C, Houser SR, Tomaselli GF, O'Rourke B, Judge DP, Kass DA, Kwon C (2017) Neonatal transplantation confers maturation of PSC-derived cardiomyocytes conducive to modeling cardiomyopathy. Cell Rep 18:571–582

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G, D'Aniello C, Monshouwer-Kloots J, Goumans MJ, Wang YL, Feinberg AW, Mummery CL, Passier R (2015) Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro–correlation between contraction force and electrophysiology. Biomaterials 51:138–150

    CAS  PubMed  Google Scholar 

  194. Li RK, Mickle DA, Weisel RD, Carson S, Omar SA, Tumiati LC, Wilson GJ, Williams WG (1996) Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging. Cardiovasc Res 32:362–373

    CAS  PubMed  Google Scholar 

  195. Polak S, Fijorek K (2012) Inter-individual variability in the pre-clinical drug cardiotoxic safety assessment–analysis of the age-cardiomyocytes electric capacitance dependence. J Cardiovasc Transl Res 5:321–332

    PubMed  PubMed Central  Google Scholar 

  196. Scuderi GJ, Butcher J (2017) Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol 5:50

    PubMed  PubMed Central  Google Scholar 

  197. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86:426–430

    CAS  PubMed  Google Scholar 

  198. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    CAS  PubMed  Google Scholar 

  200. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS ONE 6:e26397

    CAS  PubMed  PubMed Central  Google Scholar 

  202. van den Heuvel NH, van Veen TA, Lim B, Jonsson MK (2014) Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J Mol Cell Cardiol 67:12–25

    PubMed  Google Scholar 

  203. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301:H2006–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Keung W, Boheler KR, Li RA (2014) Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 5:17

    PubMed  PubMed Central  Google Scholar 

  205. Bhute VJ, Bao X, Dunn KK, Knutson KR, McCurry EC, Jin G, Lee WH, Lewis S, Ikeda A, Palecek SP (2017) Metabolomics identifies metabolic markers of maturation in human pluripotent stem cell-derived cardiomyocytes. Theranostics 7:2078–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Nose N, Werner RA, Ueda Y, Gunther K, Lapa C, Javadi MS, Fukushima K, Edenhofer F, Higuchi T (2018) Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: functional assessment using in vitro radionuclide uptake assay. Int J Cardiol 269:229–234

    PubMed  Google Scholar 

  207. Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, Vergnes L, Fu K, Morselli M, Dunham C, Ding X, Stieg AZ, Gimzewski JK, Pellegrini M, Clark PM, Reue K, Lusis AJ, Ribalet B, Kurdistani SK, Christofk H, Nakatsuji N, Nakano A (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:e29330

    PubMed  PubMed Central  Google Scholar 

  208. McDevitt TC, Laflamme MA, Murry CE (2005) Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. J Mol Cell Cardiol 39:865–873

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22:1991–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Piccini I, Rao J, Seebohm G, Greber B (2015) Human pluripotent stem cell-derived cardiomyocytes: Genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genom Data 4:69–72

    PubMed  PubMed Central  Google Scholar 

  211. Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M (2015) Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 24:1035–1052

    CAS  PubMed  Google Scholar 

  212. Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS (2018) Biophysical study of human induced pluripotent stem cell-derived cardiomyocyte structural maturation during long-term culture. Biochem Biophys Res Commun 499:611–617

    CAS  PubMed  Google Scholar 

  213. Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J, Hattori T, Ohno S, Kita T, Horie M, Yamanaka S, Kimura T (2013) Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 77:1307–1314

    CAS  PubMed  Google Scholar 

  214. Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, Murry CE, Sniadecki NJ (2018) Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 118:147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135:1832–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ribeiro AJ, Ang YS, Fu JD, Rivas RN, Mohamed TM, Higgs GC, Srivastava D, Pruitt BL (2015) Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci USA 112:12705–12710

    CAS  PubMed  Google Scholar 

  217. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Masse S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Murry CE (2016) Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134:1557–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S, Maier LS, Krause A, Drager G, Ochs M, Haverich A, Gruh I, Martin U (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    CAS  PubMed  Google Scholar 

  220. Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N (2017) Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 8:1825

    PubMed  PubMed Central  Google Scholar 

  221. Lee DS, Chen JH, Lundy DJ, Liu CH, Hwang SM, Pabon L, Shieh RC, Chen CC, Wu SN, Yan YT, Lee ST, Chiang PM, Chien S, Murry CE, Hsieh PC (2015) Defined microRNAs induce aspects of maturation in mouse and human embryonic-stem-cell-derived cardiomyocytes. Cell Rep 12:1960–1967

    CAS  PubMed  Google Scholar 

  222. Carson D, Hnilova M, Yang X, Nemeth CL, Tsui JH, Smith AS, Jiao A, Regnier M, Murry CE, Tamerler C, Kim DH (2016) Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl Mater Interfaces 8:21923–21932

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Pioner JM, Racca AW, Klaiman JM, Yang KC, Guan X, Pabon L, Muskheli V, Zaunbrecher R, Macadangdang J, Jeong MY, Mack DL, Childers MK, Kim DH, Tesi C, Poggesi C, Murry CE, Regnier M (2016) Isolation and mechanical measurements of myofibrils from human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rep 6:885–896

    CAS  Google Scholar 

  224. Smith AST, Yoo H, Yi H, Ahn EH, Lee JH, Shao G, Nagornyak E, Laflamme MA, Murry CE, Kim DH (2017) Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem Commun (Camb) 53:7412–7415

    CAS  Google Scholar 

  225. Rupert CE, Coulombe KLK (2017) IGF1 and NRG1 enhance proliferation, metabolic maturity, and the force-frequency response in hESC-derived engineered cardiac tissues. Stem Cells Int 2017:7648409

    PubMed  PubMed Central  Google Scholar 

  226. Lee YK, Ng KM, Chan YC, Lai WH, Au KW, Ho CY, Wong LY, Lau CP, Tse HF, Siu CW (2010) Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol 24:1728–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X, Sniadecki NJ, Laflamme MA, Ruzzo WL, Murry CE, Ruohola-Baker H (2015) Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci USA 112:E2785–2794

    CAS  PubMed  Google Scholar 

  228. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    CAS  PubMed  Google Scholar 

  229. Hockemeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of crispr systems: harnessing nature's toolbox for genome engineering. Cell 164:29–44

    CAS  PubMed  Google Scholar 

  231. Zhu WZ, Santana LF, Laflamme MA (2009) Local control of excitation-contraction coupling in human embryonic stem cell-derived cardiomyocytes. PLoS ONE 4:e5407

    PubMed  PubMed Central  Google Scholar 

  232. Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N (2016) Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 148:341–355

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Schram G, Pourrier M, Wang Z, White M, Nattel S (2003) Barium block of Kir2 and human cardiac inward rectifier currents: evidence for subunit-heteromeric contribution to native currents. Cardiovasc Res 59:328–338

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the current and past members of the Murry lab and of the UW Medicine Heart Regeneration Program for the insightful discussions.

Funding

AB holds an EMBO Long-Term Fellowship (ALTF 448–2017). CEM is supported by the National Institute of Health grants R01HL128362, R01H128368, R01HL141570, R01HL141868, U01HL100405, and a grant from the Fondation Leducq Transatlantic Network of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Murry.

Ethics declarations

Conflict of interest

CEM is a scientific founder and equity holder in Cytocardia.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchianò, S., Bertero, A. & Murry, C.E. Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatr Cardiol 40, 1367–1387 (2019). https://doi.org/10.1007/s00246-019-02165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02165-5

Keywords

Navigation