Skip to main content

Advertisement

Log in

Feasibility of Non-invasive Fetal Electrocardiographic Interval Measurement in the Outpatient Clinical Setting

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Non-invasive fetal electrocardiography (ECG) is a promising method for evaluating fetal cardiac electrical activity. Despite advances in fetal ECG technology, its ability to provide reliable, interpretable results in a typical outpatient fetal cardiology setting remains unclear. We sought to determine the feasibility of measuring standard ECG intervals in an outpatient fetal cardiology practice using an abdominal fetal ECG device that employs blind source separation with reference, an innovative signal-processing technique for fetal ECG extraction. Women scheduled for clinically indicated outpatient fetal echocardiogram underwent 10 min of fetal ECG acquisition from the maternal abdomen using specialized gel electrodes. A bedside laptop computer performed fetal ECG extraction, allowing real-time visualization of fetal and maternal ECG signals. Offline post-processing of 1 min of recorded data yielded fetal P-wave duration, PR interval, QRS duration, RR interval, QT interval, and QTc. Fifty-five fetuses were studied with gestational age 18–37 weeks, including 13 with abnormal fetal echocardiogram findings and three sets of twins. Interpretable results were obtained in 91% of fetuses, including 85% during the vernix period and 100% of twin fetuses. PR interval and RR interval of 18–24 week gestation fetuses were significantly shorter than those with gestational age 25–31 and 32–37 weeks. Of the six fetuses with abnormal rhythms on fetal echocardiogram, fetal ECG tracing was interpretable in five and matched the rhythm noted on fetal echocardiogram. Abdominal fetal ECG acquisition is feasible for arrhythmia detection and ECG interval calculation in a routine clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strasburger JF (2000) Fetal arrhythmias. Prog Pediatr Cardiol 11:1–17. https://doi.org/10.1016/S1058-9813(00)00031-X

    Article  CAS  PubMed  Google Scholar 

  2. Strasburger JF, Cheulkar B, Wichman HJ (2007) Perinatal arrhythmias: diagnosis and management. Clin Perinatol 34:627–652. https://doi.org/10.1016/j.clp.2007.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Crotti L, Tester DJ, White WM et al (2013) Long QT syndrome-associated mutations in intrauterine fetal death. JAMA 309:1473–1482. https://doi.org/10.1001/jama.2013.3219

    Article  CAS  PubMed  Google Scholar 

  4. Munroe PB, Addison S, Abrams DJ et al (2018) Postmortem genetic testing for cardiac ion channelopathies in stillbirths. Circ Genomic Precis Med 11:e001817. https://doi.org/10.1161/CIRCGEN.117.001817

    Article  CAS  Google Scholar 

  5. Eronen M (1997) Outcome of fetuses with heart disease diagnosed in utero. Arch Dis Child Fetal Neonatal Ed 77:F41–F46. https://doi.org/10.1136/fn.77.1.F41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moodley S, Sanatani S, Potts JE, Sandor GGS (2013) Postnatal outcome in patients with fetal tachycardia. Pediatr Cardiol 34:81–87. https://doi.org/10.1007/s00246-012-0392-7

    Article  PubMed  Google Scholar 

  7. Ekman-Joelsson BM, Mellander M, Lagnefeldt L, Sonesson SE (2015) Foetal tachyarrhythmia treatment remains challenging even if the vast majority of cases have a favourable outcome. Acta Paediatr Int J Paediatr 104:1090–1097. https://doi.org/10.1111/apa.13111

    Article  CAS  Google Scholar 

  8. Ueda K, Maeno Y, Miyoshi T et al (2018) The impact of intrauterine treatment on fetal tachycardia: a nationwide survey in Japan. J Matern Neonatal Med 31:2605–2610. https://doi.org/10.1080/14767058.2017.1350159

    Article  CAS  Google Scholar 

  9. Donofrio MT, Moon-Grady AJ, Hornberger LK et al (2014) Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 129:2183–2242. https://doi.org/10.1161/01.cir.0000437597.44550.5d

    Article  PubMed  Google Scholar 

  10. Kimura Y, Sato N, Sugawara J et al (2012) Recent advances in fetal electrocardiography. Open Med Devices J 4:7–12. https://doi.org/10.2174/1875181401204010007

    Article  Google Scholar 

  11. Stinstra J, Golbach E, Van Leeuwen P et al (2002) Multicentre study of fetal cardiac time intervals using magnetocardiography. BJOG Int J Obstet Gynaecol 109:1235–1243. https://doi.org/10.1046/j.1471-0528.2002.01057.x

    Article  CAS  Google Scholar 

  12. De Lathauwer L, De Moor B, Vandewalle J (2000) Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans Biomed Eng 47:567–572. https://doi.org/10.1109/10.841326

    Article  PubMed  Google Scholar 

  13. Sato M, Kimura Y, Chida S et al (2007) A novel extraction method of fetal electrocardiogram from the composite abdominal signal. IEEE Trans Biomed Eng 54:49–58. https://doi.org/10.1109/TBME.2006.883791

    Article  PubMed  Google Scholar 

  14. Kimura Y, Chida S, Nakao M et al (2007) Non-linear signal separation method using non-linear state space projection method.  World Intellectual Property Organization, Patent WO/2007/029485.  https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007029485

  15. Kimura Y, Nakao M, Ito T, Ohwada K (2009) Method and device for extracting electrocardiogram of embryo by using reference system independent partial space extraction method.  World Intellectual Property Organization, Patent WO/2009/110088. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2009110088

  16. Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438:237–329

    Article  Google Scholar 

  17. Agostinelli A, Grillo M, Biagini A et al (2015) Noninvasive fetal electrocardiography: an overview of the signal electrophysiological meaning, recording procedures, and processing techniques. Ann Noninvasive Electrocardiol 20:303–313. https://doi.org/10.1111/anec.12259

    Article  PubMed  Google Scholar 

  18. Oostendorp TF, Van Oosterom A, Jongsma HW (1989) The fetal ECG throughout the second half of gestation. Clin Phys Physiol Meas 10:147–160. https://doi.org/10.1088/0143-0815/10/2/004

    Article  CAS  PubMed  Google Scholar 

  19. Arya B, Govindan R, Krishnan A et al (2015) Feasibility of noninvasive fetal electrocardiographic monitoring in a clinical setting. Pediatr Cardiol 36:1042–1049. https://doi.org/10.1007/s00246-015-1118-4

    Article  PubMed  Google Scholar 

  20. Cremer M (1906) Ueber die direkte Ableitung der Aktionsstrome der menschlichen Herzens vom Oesophagus and ueber das Elektrokardiogramm des Foetus. Munchen Med Wschr 53:811–813

    Google Scholar 

  21. Widrow B, Williams CS, Glover JR et al (1975) Adaptive noise cancelling: principles and applications. Proc IEEE 63:1692–1716. https://doi.org/10.1109/PROC.1975.10036

    Article  Google Scholar 

  22. Taylor MJO, Smith MJ, Thomas M et al (2003) Non-invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG Int J Obstet Gynaecol 110:668–678. https://doi.org/10.1016/S1470-0328(03)02005-6

    Article  Google Scholar 

  23. Sato N, Hoshiai T, Ito T et al (2011) Successful detection of the fetal electrocardiogram waveform changes during various states of singletons. Tohoku J Exp Med 225:89–94. https://doi.org/10.1620/tjem.225.89

    Article  PubMed  Google Scholar 

  24. Wacker-Gussmann A, Plankl C, Sewald M et al (2018) Fetal cardiac time intervals in healthy pregnancies—an observational study by fetal ECG (Monica Healthcare System). J Perinat Med 46:587–592. https://doi.org/10.1515/jpm-2017-0003

    Article  PubMed  Google Scholar 

  25. Nii M, Hamilton RM, Fenwick L et al (2006) Assessment of fetal atrioventricular time intervals by tissue Doppler and pulse Doppler echocardiography: normal values and correlation with fetal electrocardiography. Heart 92:1831–1837. https://doi.org/10.1136/hrt.2006.093070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shizu Shoji, Rika Kamamoto, Kunihiro Koide, and Namareq Widatalla for their assistance with data processing and analysis.

Funding

This work was supported by the Developmental Disorder Data Multi-level Integration Unit of Medical Sciences Innovation Hub Program (MIH), RIKEN (to Tohoku University), and philanthropic funding to the cardiology patient research fund at Children’s National Medical Center (SPF 44563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish N. Doshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doshi, A.N., Mass, P., Cleary, K.R. et al. Feasibility of Non-invasive Fetal Electrocardiographic Interval Measurement in the Outpatient Clinical Setting. Pediatr Cardiol 40, 1175–1182 (2019). https://doi.org/10.1007/s00246-019-02128-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02128-w

Keywords

Navigation