Pediatric Cardiology

, Volume 39, Issue 5, pp 869–883 | Cite as

Heart Rate Variability and Cardiopulmonary Dysfunction in Patients with Duchenne Muscular Dystrophy: A Systematic Review

  • Talita Dias da Silva
  • Thais Massetti
  • Tânia Brusque Crocetta
  • Carlos Bandeira de Mello Monteiro
  • Alex Carll
  • Luiz Carlos Marques Vanderlei
  • Carlie Arbaugh
  • Fernando Rocha Oliveira
  • Luiz Carlos de Abreu
  • Celso Ferreira Filho
  • John Godleski
  • Celso Ferreira
Review Article

Abstract

Duchenne muscular dystrophy (DMD) is a genetic recessive disorder with progressive muscle weakness. Despite the general muscle wasting, degeneration and necrosis of cardiomyocytes have been the main causes of morbidity and death in individuals with DMD. Cardiac failure is generally preceded by disturbances in heart rate variability (HRV), and non-invasive measurement of the autonomic nervous system has been an important tool to predict adverse cardiovascular events. Hence, the application of HRV to study autonomic modulation in DMD individuals, and the establishment of correlations between HRV and heart/lung diseases, age, and mortality will have the potential to improve quality of life and life expectancy of individuals with DMD. In order to evaluate the state of the art in this field, we conducted a systematic search in Medline/PubMed and BVS (virtual library in health) databases. We selected 8 studies using pre-defined criteria and meta-analysis revealed decreased parasympathetic activity and increased sympathetic predominance in individuals with DMD as major observations. Moreover, there is a strong association between diminished HRV and myocardial fibrosis with DMD. These patterns are evident in patients at early-stage DMD and become more prominent as disease severity and age increase. Thus, data minning clearly indicates that HRV assessment can be used as a predictor for sudden death in individuals with DMD. The use of the HRV, which is inexpensive, ubiquitously available in clinics and hospitals, and a non-invasive analysis tool, can save lives and decrease the morbity in DMD by alerting care givers to consider autonomic nervous system intervention.

Keywords

Duchenne muscular dystrophy Cardiomyopathy Heart rate variability Autonomic modulation 

Abbreviations

DMD

Duchenne muscular dystrophy

HRV

Heart rate variability

BVS

Virtual library in health

Mean RR

Mean of the RR intervals

RMSSD

Square root of the mean of squared differences between successive beat intervals

SDNN

Standard deviation of all normal RR interval

SDANN

Standard deviation of the means of normal-to-normal heart periods obtained from all 5-min periods throughout the whole data series

SDNNi

Average of the standard deviations of all normal-to-normal intervals calculated from all 5-min periods of a 24-h recording period

pNN50

Percentage of differences between RR intervals with an absolute value greater than 50 ms

CVrr

Coefficient of variation of the RR interval

PaCO2

Partial pressure of carbon dioxide (CO2) in the arterial blood

LF

Low frequency

HF

High frequency

VLF

Very low frequency

ANS

Autonomic nervous system

BNP

Brain natriuretic peptide

FS

Fractional shortening

TTE

Trans-thoracic echocardiography

TD

Tissue doppler imaging

MRI

Magnetic resonance imaging

cMR

Cardiac magnetic resonance

LGE

Late gadolinium enhancement

WMA

Wall motion analysis

QMT

Quantitative muscle testing

ACE

Angiotensin-converting enzyme inhibitors

PRISMA

Preferred reporting items for systematic reviews and meta-analyses

PICO

Population intervention comparison outcome

SMD

Standard mean differences

SD

Standard deviation

Notes

Acknowledgements

The authors thank CNPq (National Council for Scientific and Technological Development, process number 142280/2015-1), CAPES (Coordination for the Improvement of Higher Education Personnel, Process No. 99999.014604/2013-02) for support of this work.

Author Contributions

TDS, TM, FRO, and TBC participated in the acquisition of data and TDS, AC, CBMM, CA, LCA, LCMV, CFF, JG, and CF participated in the revision of the manuscript. TDS, TM, CBMM, CF determined the design, interpreted the data and all authors helped on draft the manuscript. All authors read and gave final approval for the version submitted for publication.

Compliance with Ethical Standards

Conflict of interest

All authors report no conflict of interest.

Informed Consent

The current study does not contain any data from individual persons.

References

  1. 1.
    Rodino-Klapac LR, Mendell JR, Sahenk Z (2013) Update on the treatment of Duchenne muscular dystrophy. Curr Neurol Neurosci Rep 13:332.  https://doi.org/10.1007/s11910-012-0332-1 CrossRefPubMedGoogle Scholar
  2. 2.
    McNally EM (2008) Duchenne muscular dystrophy: how bad is the heart? Heart, England, pp 976–977Google Scholar
  3. 3.
    Mercuri E, Muntoni F (2013) Muscular dystrophies. Lancet 381:845–860.  https://doi.org/10.1016/s0140-6736(12)61897-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Dhargave P, Nalini A, Abhishekh HA, Meghana A, Nagarathna R, Raju TR, Sathyaprabha TN (2014) Assessment of cardiac autonomic function in patients with Duchenne muscular dystrophy using short term heart rate variability measures. Eur J Paediatr Neurol 18:317–320.  https://doi.org/10.1016/j.ejpn.2013.12.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Mochizuki H, Okahashi S, Ugawa Y, Tamura T, Suzuki M, Miyatake S, Shigeyama T, Ogata K, Kawai M (2008) Heart rate variability and hypercapnia in Duchenne muscular dystrophy. Intern Med 47:1893–1897CrossRefPubMedGoogle Scholar
  6. 6.
    Simonds AK, Muntoni F, Heather S, Fielding S (1998) Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax 53:949–952CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Inoue M, Mori K, Hayabuchi Y, Tatara K, Kagami S (2009) Autonomic function in patients with Duchenne muscular dystrophy. Pediatr Int 51:33–40.  https://doi.org/10.1111/j.1442-200X.2008.02656.x CrossRefPubMedGoogle Scholar
  8. 8.
    Kirchmann C, Kececioglu D, Korinthenberg R, Dittrich S (2005) Echocardiographic and electrocardiographic findings of cardiomyopathy in Duchenne and Becker-Kiener muscular dystrophies. Pediatr Cardiol 26:66–72.  https://doi.org/10.1007/s00246-004-0689-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26:967–974.  https://doi.org/10.1093/eurheartj/ehi190 CrossRefPubMedGoogle Scholar
  10. 10.
    Vanderlei LC, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF (2009) Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc 24:205–217CrossRefPubMedGoogle Scholar
  11. 11.
    Lanza GA, Dello Russo A, Giglio V, De Luca L, Messano L, Santini C, Ricci E, Damiani A, Fumagalli G, De Martino G, Mangiola F, Bellocci F (2001) Impairment of cardiac autonomic function in patients with Duchenne muscular dystrophy: relationship to myocardial and respiratory function. Am Heart J 141:808–812CrossRefPubMedGoogle Scholar
  12. 12.
    Hoshi RA, Pastre CM, Vanderlei LC, Godoy MF (2013) Poincare plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci 177:271–274.  https://doi.org/10.1016/j.autneu.2013.05.004 CrossRefPubMedGoogle Scholar
  13. 13.
    de Carvalho TD, de Abreu LC, Mustacchi Z, Vanderlei LC, Godoy MF, Raimundo RD, Ferreira Filho C, da Silva TD, Guilhoto L, Perico V, Finotti VR, Ferreira C (2015) Cardiac autonomic modulation of children with Down syndrome. Pediatr Cardiol 36:344–349.  https://doi.org/10.1007/s00246-014-1012-5 CrossRefPubMedGoogle Scholar
  14. 14.
    de Carvalho TD, Wajnsztejn R, de Abreu LC, Marques Vanderlei LC, Godoy MF, Adami F, Valenti VE, Monteiro CB, Leone C, da Cruz Martins KC, Ferreira C (2014) Analysis of cardiac autonomic modulation of children with attention deficit hyperactivity disorder. Neuropsychiatr Dis Treat 10: 613–618  https://doi.org/10.2147/ndt.s49071 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784.  https://doi.org/10.7326/m14-2385 CrossRefPubMedGoogle Scholar
  16. 16.
    de Menezes LDC, Massetti T, Oliveira FR, de Abreu LC, Malheiros SRP, Trevizan IL, Moriyama CH, de Mello Monteiro CB (2015) Motor learning and virtual reality in down syndrome; a literature review. Int Archiv Med 8:1–11Google Scholar
  17. 17.
    Massetti T, Crocetta TB, Silva TDD, Trevizan IL, Arab C, Caromano FA, Monteiro CBM (2017) Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review. Disabil Rehabil Assist Technol 12:551–559.  https://doi.org/10.1080/17483107.2016.1230152 CrossRefPubMedGoogle Scholar
  18. 18.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–441.  https://doi.org/10.1016/j.ijsu.2010.02.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Yotsukura M, Sasaki K, Kachi E, Sasaki A, Ishihara T, Ishikawa K (1995) Circadian rhythm and variability of heart rate in Duchenne-type progressive muscular dystrophy. Am J Cardiol 76:947–951CrossRefPubMedGoogle Scholar
  20. 20.
    Thomas TO, Jefferies JL, Lorts A, Anderson JB, Gao Z, Benson DW, Hor KN, Cripe LH, Urbina EM (2015) Autonomic dysfunction: a driving force for myocardial fibrosis in young Duchenne muscular dystrophy patients? Pediatr Cardiol 36:561–568.  https://doi.org/10.1007/s00246-014-1050-z CrossRefPubMedGoogle Scholar
  21. 21.
    Dittrich S, Tuerk M, Haaker G, Greim V, Buchholz A, Burkhardt B, Fujak A, Trollmann R, Schmid A, Schroeder R (2015) Cardiomyopathy in Duchenne muscular dystrophy: current value of clinical, electrophysiological and imaging findings in children and teenagers. Klin Padiatr 227:225–231.  https://doi.org/10.1055/s-0034-1398689 CrossRefPubMedGoogle Scholar
  22. 22.
    Yotsukura M, Fujii K, Katayama A, Tomono Y, Ando H, Sakata K, Ishihara T, Ishikawa K (1998) Nine-year follow-up study of heart rate variability in patients with Duchenne-type progressive muscular dystrophy. Am Heart J 136:289–296.  https://doi.org/10.1053/hj.1998.v136.89737 CrossRefPubMedGoogle Scholar
  23. 23.
    Viechtbauer W, Smits L, Kotz D, Bude L, Spigt M, Serroyen J, Crutzen R (2015) A simple formula for the calculation of sample size in pilot studies. J Clin Epidemiol 68:1375–1379.  https://doi.org/10.1016/j.jclinepi.2015.04.014 CrossRefPubMedGoogle Scholar
  24. 24.
    Zamuner AR, Cunha AB, da Silva E, Negri AP, Tudella E, Moreno MA (2011) The influence of motor impairment on autonomic heart rate modulation among children with cerebral palsy. Res Dev Disabil 32:217–221.  https://doi.org/10.1016/j.ridd.2010.09.020 CrossRefPubMedGoogle Scholar
  25. 25.
    Cygankiewicz I, Zareba W (2013) Heart rate variability. Handb Clin Neurol 117:379–393.  https://doi.org/10.1016/b978-0-444-53491-0$400031-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Marães VR, Catai AM, Milan LA, Rojas FA, Oliveira LD, Teixeira LC, Gallo Junior L, Silva ED (2003) Determinação e validação do limiar de anaerobiose a partir de métodos de análise de frequência cardíaca e de sua variabilidade. Rev Soc Cardiol Estado de Säo Paulo 13: 1–16Google Scholar
  27. 27.
    Pumprla J, Howorka K, Groves D, Chester M, Nolan J (2002) Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol 84:1–14CrossRefPubMedGoogle Scholar
  28. 28.
    Arab C, Dias DP, Barbosa RT, Carvalho TD, Valenti VE, Crocetta TB, Ferreira M, Abreu LC, Ferreira C (2016) Heart rate variability measure in breast cancer patients and survivors: a systematic review. Psychoneuroendocrinology 68:57–68.  https://doi.org/10.1016/j.psyneuen.2016.02.018 CrossRefPubMedGoogle Scholar
  29. 29.
    Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919CrossRefPubMedGoogle Scholar
  30. 30.
    Kadoya M, Koyama H, Kurajoh M, Kanzaki A, Kakutani-Hatayama M, Okazaki H, Shoji T, Moriwaki Y, Yamamoto T, Emoto M, Inaba M, Namba M (2015) Sleep, cardiac autonomic function, and carotid atherosclerosis in patients with cardiovascular risks: HSCAA study. Atherosclerosis 238:409–414.  https://doi.org/10.1016/j.atherosclerosis.2014.12.032 CrossRefPubMedGoogle Scholar
  31. 31.
    Yperzeele L, van Hooff RJ, De Smedt A, Nagels G, Hubloue I, De Keyser J, Brouns R (2016) Feasibility, reliability and predictive value of in-ambulance heart rate variability registration. PLoS ONE 11:e0154834.  https://doi.org/10.1371/journal.pone.0154834 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 351:478–484CrossRefPubMedGoogle Scholar
  33. 33.
    Chu V, Otero JM, Lopez O, Sullivan MF, Morgan JP, Amende I, Hampton TG (2002) Electrocardiographic findings in mdx mice: a cardiac phenotype of Duchenne muscular dystrophy. Muscle Nerve 26:513–519.  https://doi.org/10.1002/mus.10223 CrossRefPubMedGoogle Scholar
  34. 34.
    Posner AD, Soslow JH, Burnette WB, Bian A, Shintani A, Sawyer DB, Markham LW (2016) The correlation of skeletal and cardiac muscle dysfunction in Duchenne muscular dystrophy. J Neuromuscul Dis 3:91–99.  https://doi.org/10.3233/jnd-150132 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Barbin IC, Pereira JA, Bersan Rovere M, de Oliveira Moreira D, Marques MJ, Santo Neto H (2016) Diaphragm degeneration and cardiac structure in mdx mouse: potential clinical implications for Duchenne muscular dystrophy. J Anat 228:784–791.  https://doi.org/10.1111/joa.12443 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li Y, Zhang S, Zhang X, Li J, Ai X, Zhang L, Yu D, Ge S, Peng Y, Chen X (2014) Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy. Cardiovasc Res 103:60–71.  https://doi.org/10.1093/cvr/cvu119 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dalmaz Y, Peyrin L, Mamelle JC, Tuil D, Gilly R, Cier JF (1979) The pattern of urinary catecholamines and their metabolites in Duchenne myopathy, in relation to disease evolution. J Neural Transm 46:17–34 DOICrossRefPubMedGoogle Scholar
  38. 38.
    Lampert R, Ickovics JR, Viscoli CJ, Horwitz RI, Lee FA (2003) Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Beta-Blocker Heart Attack Trial. Am J Cardiol 91:137–142CrossRefPubMedGoogle Scholar
  39. 39.
    Li RW, Levi DM, Klein SA (2004) Perceptual learning improves efficiency by re-tuning the decision ‘template’ for position discrimination. Nat Neurosci 7:178–183.  https://doi.org/10.1038/nn1183 CrossRefPubMedGoogle Scholar
  40. 40.
    de Hartog JJ, Lanki T, Timonen KL, Hoek G, Janssen NA, Ibald-Mulli A, Peters A, Heinrich J, Tarkiainen TH, van Grieken R, van Wijnen JH, Brunekreef B, Pekkanen J (2009) Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ Health Perspect 117:105–111.  https://doi.org/10.1289/ehp.11062 CrossRefPubMedGoogle Scholar
  41. 41.
    Reis MS, Arena R, Archiza B, de Toledo CF, Catai AM, Borghi-Silva A (2014) Deep breathing heart rate variability is associated with inspiratory muscle weakness in chronic heart failure. Physiother Res Int 19:16–24.  https://doi.org/10.1002/pri.1552 CrossRefPubMedGoogle Scholar
  42. 42.
    Raimundo RD, de Abreu LC, Adami F, Vanderlei FM, de Carvalho TD, Moreno IL, Pereira VX, Valenti VE, Sato MA (2013) Heart rate variability in stroke patients submitted to an acute bout of aerobic exercise. Transl Stroke Res 4:488–499.  https://doi.org/10.1007/s12975-013-0263-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93.  https://doi.org/10.1016/s1474-4422(09)70271-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Paulista School of MedicineFederal University of São PauloSão PauloBrazil
  2. 2.Department of Environmental HealthHarvard TH Chan School of Public HealthBostonUSA
  3. 3.Graduate Program in Rehabilitation Sciences, Faculty of MedicineUniversity of São PauloSão PauloBrazil
  4. 4.Faculty of Medicine of ABCSanto AndréBrazil
  5. 5.Sao Paulo State University - UNESPPresidente PrudenteBrazil
  6. 6.Stanford University School of MedicineStanfordUSA
  7. 7.School of Public HealthUniversity of São PauloSão PauloBrazil
  8. 8.Graduate Program in Medicine (Cardiology), Paulista School of MedicineFederal University of São PauloSão PauloBrazil

Personalised recommendations