Skip to main content

Advertisement

Log in

Mechanisms of Trabecular Formation and Specification During Cardiogenesis

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Trabecular morphogenesis is a key morphologic event during cardiogenesis and contributes to the formation of a competent ventricular wall. Lack of trabeculation results in embryonic lethality. The trabecular morphogenesis is a multistep process that includes, but is not limited to, trabecular initiation, proliferation/growth, specification, and compaction. Although a number of signaling molecules have been implicated in regulating trabeculation, the cellular processes underlying mammalian trabecular formation are not fully understood. Recent works show that the myocardium displays polarity, and oriented cell division (OCD) and directional migration of the cardiomyocytes in the monolayer myocardium are required for trabecular initiation and formation. Furthermore, perpendicular OCD is an extrinsic asymmetric cell division that contributes to trabecular specification, and is a mechanism that causes the trabecular cardiomyocytes to be distinct from the cardiomyocytes in compact zone. Once the coronary vasculature system starts to function in the embryonic heart, the trabeculae will coalesce with the compact zone to thicken the heart wall, and abnormal compaction will lead to left ventricular non-compaction (LVNC) and heart failure. There are many reviews about compaction and LVNC. In this review, we will focus on the roles of myocardial polarity and OCD in trabecular initiation, formation, and specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manasek FJ (1968) Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 125:329–365. https://doi.org/10.1002/jmor.1051250306

    Article  PubMed  CAS  Google Scholar 

  2. Van Mierop LH (1979) Embryology of the univentricular heart. Herz 4:78–85

    PubMed  Google Scholar 

  3. Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    Article  PubMed  CAS  Google Scholar 

  4. Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat 130:264–274

    Article  PubMed  CAS  Google Scholar 

  5. Jenni R, Rojas J, Oechslin E (1999) Isolated noncompaction of the myocardium. N Engl J Med 340:966–967. https://doi.org/10.1056/NEJM199903253401215

    Article  PubMed  CAS  Google Scholar 

  6. Gassmann M et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394. https://doi.org/10.1038/378390a0

    Article  PubMed  CAS  Google Scholar 

  7. Jefferies JL et al (2015) Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Cardiac Fail 21:877–884. https://doi.org/10.1016/j.cardfail.2015.06.381

    Article  Google Scholar 

  8. Towbin JA, Jefferies JL (2017) Cardiomyopathies due to left ventricular noncompaction, mitochondrial and storage diseases, and inborn errors of metabolism. Circ Res 121:838–854. https://doi.org/10.1161/CIRCRESAHA.117.310987

    Article  PubMed  CAS  Google Scholar 

  9. Finsterer J (2010) Left ventricular non-compaction and its cardiac and neurologic implications. Heart Fail Rev 15:589–603. https://doi.org/10.1007/s10741-010-9175-5

    Article  PubMed  Google Scholar 

  10. Hussein A, Karimianpour A, Collier P, Krasuski RA (2015) Isolated noncompaction of the left ventricle in adults. J Am Coll Cardiol 66:578–585. https://doi.org/10.1016/j.jacc.2015.06.017

    Article  PubMed  Google Scholar 

  11. Weiford BC, Subbarao VD, Mulhern KM (2004) Noncompaction of the ventricular myocardium. Circulation 109:2965–2971. https://doi.org/10.1161/01.CIR.0000132478.60674.D0

    Article  PubMed  Google Scholar 

  12. Horvitz HR, Herskowitz I (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68:237–255

    Article  PubMed  CAS  Google Scholar 

  13. Jan YN, Jan LY (2000) Polarity in cell division: what frames thy fearful asymmetry?. Cell 100:599–602

    Article  PubMed  CAS  Google Scholar 

  14. Neumuller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699. https://doi.org/10.1101/gad.1850809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wu M, Herman MA (2006) A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Dev Biol 293:316–329. https://doi.org/10.1016/j.ydbio.2005.12.024

    Article  PubMed  CAS  Google Scholar 

  16. Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901. https://doi.org/10.1038/nrm2523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu M et al (2010) Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 19:114–125. https://doi.org/10.1016/j.devcel.2010.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li J et al (2017) CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development 144:1635–1647. https://doi.org/10.1242/dev.147173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hirose T et al (2006) PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development 133:1389–1398. https://doi.org/10.1242/dev.02294

    Article  PubMed  CAS  Google Scholar 

  20. Rhee DY et al (2009) Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development 136:3185–3193. https://doi.org/10.1242/dev.032334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sengbusch JK, He W, Pinco KA, Yang JT (2002) Dual functions of α4β1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 157:873–882. https://doi.org/10.1083/jcb.200203075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jimenez-Amilburu V et al (2016) In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep 17:2687–2699. https://doi.org/10.1016/j.celrep.2016.11.023

    Article  PubMed  CAS  Google Scholar 

  23. Passer D, van de Vrugt A, Atmanli A, Domian IJ (2016) Atypical protein kinase C-dependent polarized cell division is required for myocardial trabeculation. Cell Rep 14:1662–1672. https://doi.org/10.1016/j.celrep.2016.01.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li J et al (2016) Single-cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification. Cell Rep 15:158–170. https://doi.org/10.1016/j.celrep.2016.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Castanon I, Gonzalez-Gaitan M (2011) Oriented cell division in vertebrate embryogenesis. Curr Opin Cell Biol 23:697–704. https://doi.org/10.1016/j.ceb.2011.09.009

    Article  PubMed  CAS  Google Scholar 

  26. Wei Y, Mikawa T (2000) Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development 127:87–96

    PubMed  CAS  Google Scholar 

  27. Baena-Lopez LA, Baonza A, Garcia-Bellido A (2005) The orientation of cell divisions determines the shape of Drosophila organs. Curr Biol 15:1640–1644. https://doi.org/10.1016/j.cub.2005.07.062

    Article  PubMed  CAS  Google Scholar 

  28. Liu J et al (2010) A dual role for ErbB2 signaling in cardiac trabeculation. Development 137:3867–3875. https://doi.org/10.1242/dev.053736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Han P et al (2016) Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature 534:700–704. https://doi.org/10.1038/nature18310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Staudt DW et al (2014) High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development 141:585–593. https://doi.org/10.1242/dev.098632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Meilhac SM, Esner M, Kerszberg M, Moss JE, Buckingham ME (2004) Oriented clonal cell growth in the developing mouse myocardium underlies cardiac morphogenesis. J Cell Biol 164:97–109. https://doi.org/10.1083/jcb.200309160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6:685–698

    Article  PubMed  CAS  Google Scholar 

  33. Meilhac SM et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130:3877–3889

    Article  PubMed  CAS  Google Scholar 

  34. Mikawa T, Cohen-Gould L, Fischman DA (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus. III: polyclonal origin of adjacent ventricular myocytes. Dev Dyn 195:133–141. https://doi.org/10.1002/aja.1001950208

    Article  PubMed  CAS  Google Scholar 

  35. Du Q, Stukenberg PT, Macara IG (2001) A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat Cell Biol 3:1069–1075. https://doi.org/10.1038/ncb1201-1069

    Article  PubMed  CAS  Google Scholar 

  36. Du Q, Macara IG (2004) Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119:503–516. https://doi.org/10.1016/j.cell.2004.10.028

    Article  PubMed  CAS  Google Scholar 

  37. Mauser JF, Prehoda KE (2012) Inscuteable regulates the Pins-Mud spindle orientation pathway. PLoS ONE 7:e29611. https://doi.org/10.1371/journal.pone.0029611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Laan L et al (2012) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–514. https://doi.org/10.1016/j.cell.2012.01.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Seldin L, Muroyama A, Lechler T (2016) NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. eLife. https://doi.org/10.7554/eLife.12504

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hendricks AG et al (2012) Dynein tethers and stabilizes dynamic microtubule plus ends. Curr Biol 22:632–637. https://doi.org/10.1016/j.cub.2012.02.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146. https://doi.org/10.1146/annurev.cellbio.13.1.119

    Article  PubMed  CAS  Google Scholar 

  42. Inaba M, Yuan H, Salzmann V, Fuller MT, Yamashita YM (2010) E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells. PLoS ONE 5:e12473. https://doi.org/10.1371/journal.pone.0012473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. den Elzen N, Buttery CV, Maddugoda MP, Ren G, Yap AS (2009) Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol Biol Cell 20:3740–3750. https://doi.org/10.1091/mbc.E09-01-0023

    Article  CAS  Google Scholar 

  44. Le Borgne R, Bellaiche Y, Schweisguth F (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 12:95–104 pii]

    Article  PubMed  Google Scholar 

  45. Lu B, Roegiers F, Jan LY, Jan YN (2001) Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409:522–525. https://doi.org/10.1038/35054077

    Article  PubMed  CAS  Google Scholar 

  46. Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550. https://doi.org/10.1126/science.1087795

    Article  PubMed  CAS  Google Scholar 

  47. Gloerich M, Bianchini JM, Siemers KA, Cohen DJ, Nelson WJ (2017) Cell division orientation is coupled to cell–cell adhesion by the E-cadherin/LGN complex. Nat Commun 8:13996. https://doi.org/10.1038/ncomms13996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Luo Y et al (2001) Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. Development 128:459–469

    PubMed  CAS  Google Scholar 

  49. Cherian AV, Fukuda R, Augustine SM, Maischein HM, Stainier DY (2016) N-cadherin relocalization during cardiac trabeculation. Proc Natl Acad Sci USA 113:7569–7574. https://doi.org/10.1073/pnas.1606385113

    Article  PubMed  CAS  Google Scholar 

  50. Sedmera D et al (2003) Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat Rec 274:773–777. https://doi.org/10.1002/ar.a.10085

    Article  Google Scholar 

  51. Zhang W, Chen H, Qu X, Chang CP, Shou W (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet Part C 163:144–156. https://doi.org/10.1002/ajmg.c.31369

    Article  Google Scholar 

  52. Kochilas LK, Li J, Jin F, Buck CA, Epstein JA (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45:635–642

    Article  PubMed  CAS  Google Scholar 

  53. Chen H et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231. https://doi.org/10.1242/dev.01094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Clay H et al (2016) Sphingosine 1-phosphate receptor-1 in cardiomyocytes is required for normal cardiac development. Dev Biol 418:157–165. https://doi.org/10.1016/j.ydbio.2016.06.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Miao L et al (2018) Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification. Sci Rep 8:2678. https://doi.org/10.1038/s41598-018-20917-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Xin M et al (2007) Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proc Natl Acad Sci USA 104:7975–7980. https://doi.org/10.1073/pnas.0702447104

    Article  PubMed  CAS  Google Scholar 

  57. Koibuchi N, Chin MT (2007) CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res 100:850–855. https://doi.org/10.1161/01.RES.0000261693.13269.bf

    Article  PubMed  CAS  Google Scholar 

  58. Kokubo H et al (2004) Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res 95:540–547. https://doi.org/10.1161/01.RES.0000141136.85194.f0

    Article  PubMed  CAS  Google Scholar 

  59. Lee KF et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398. https://doi.org/10.1038/378394a0

    Article  PubMed  CAS  Google Scholar 

  60. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390. https://doi.org/10.1038/378386a0

    Article  PubMed  CAS  Google Scholar 

  61. Grego-Bessa J et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429. https://doi.org/10.1016/j.devcel.2006.12.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. VanDusen NJ et al (2014) Hand2 is an essential regulator for two Notch-dependent functions within the embryonic endocardium. Cell Rep 9:2071–2083. https://doi.org/10.1016/j.celrep.2014.11.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xin M et al (2011) Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 4:ra70. https://doi.org/10.1126/scisignal.2002278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. von Gise A et al (2012) YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 109:2394–2399. https://doi.org/10.1073/pnas.1116136109

    Article  Google Scholar 

  65. Li D et al (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138:303–315. https://doi.org/10.1242/dev.055566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhao C et al (2014) Numb family proteins are essential for cardiac morphogenesis and progenitor differentiation. Development 141:281–295. https://doi.org/10.1242/dev.093690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wu M, Li J (2015) Numb family proteins: novel players in cardiac morphogenesis and cardiac progenitor cell differentiation. Biomol Concepts 6:137–148. https://doi.org/10.1515/bmc-2015-0003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tian X et al (2017) Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat Commun 8:87. https://doi.org/10.1038/s41467-017-00118-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wu laboratory members for scientific discussion, and Dr. John Schwarz for critical reading.

Funding

This study was funded by American Heart Association [13SDG16920099] and by National Heart, Lung, and Blood Institute Grant [R01HL121700] to MW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfu Wu.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Research Involving Human Participants

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M. Mechanisms of Trabecular Formation and Specification During Cardiogenesis. Pediatr Cardiol 39, 1082–1089 (2018). https://doi.org/10.1007/s00246-018-1868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-1868-x

Keywords

Navigation