Advertisement

Pediatric Cardiology

, Volume 39, Issue 5, pp 1042–1051 | Cite as

Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development

  • Wen Lin
  • Deqiang Li
Original Article
  • 240 Downloads

Abstract

Ventricular myocardial development is a well-orchestrated process involving different cardiac structures, multiple signal pathways, and myriad proteins. Dysregulation of this important developmental event can result in cardiomyopathies, such as left ventricle non-compaction, which affect the pediatric population and the adults. Human and mouse studies have shed light upon the etiology of some cardiomyopathy cases and highlighted the contribution of both genetic and environmental factors. However, the regulation of ventricular myocardial development remains incompletely understood. Zinc is an essential trace metal with structural, enzymatic, and signaling function. Perturbation of zinc homeostasis has resulted in developmental and physiological defects including cardiomyopathy. In this review, we summarize several mechanisms by which zinc and zinc transporters can impact the regulation of ventricular myocardial development. Based on our review, we propose that zinc deficiency and mutations of zinc transporters may underlie some cardiomyopathy cases especially those involving ventricular myocardial development defects.

Keywords

Heart development Trabeculation Compaction Proliferation Differentiation LVNC Signaling pathway ECM Endocardium Myocardium Zinc Zip8 

Notes

Acknowledgements

We wish to thank Dr Nicholas Hand (University of Pennsylvania) for critical reading and insightful feedback in the preparation of this manuscript.

Compliance with Ethical Standards

Conflict of interest

None of the authors have conflicts of interest to declare.

References

  1. 1.
    Zhang W et al (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet C 163C(3):144–156CrossRefGoogle Scholar
  2. 2.
    Sedmera D et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337CrossRefPubMedGoogle Scholar
  3. 3.
    Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90(10):1044–1054CrossRefPubMedGoogle Scholar
  4. 4.
    Kochilas LK et al (1999) Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(S5):635–642CrossRefPubMedGoogle Scholar
  5. 5.
    Luxan G et al (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19(2):193–201CrossRefPubMedGoogle Scholar
  6. 6.
    Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456CrossRefPubMedGoogle Scholar
  7. 7.
    Nugent AW et al (2005) Clinical features and outcomes of childhood hypertrophic cardiomyopathy: results from a national population-based study. Circulation 112(9):1332–1338CrossRefPubMedGoogle Scholar
  8. 8.
    Towbin JA (2010) Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin 6(4):453–469CrossRefPubMedGoogle Scholar
  9. 9.
    Finsterer J, Stollberger C, Towbin JA (2017) Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat Rev Cardiol 14(4):224–237CrossRefPubMedGoogle Scholar
  10. 10.
    Klaassen S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901CrossRefPubMedGoogle Scholar
  11. 11.
    Chen R et al (2002) Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 77(4):319–325CrossRefPubMedGoogle Scholar
  12. 12.
    Ichida F et al (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103(9):1256–1263CrossRefPubMedGoogle Scholar
  13. 13.
    Hermida-Prieto M et al (2004) Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 94(1):50–54CrossRefPubMedGoogle Scholar
  14. 14.
    Tian Y, Morrisey EE (2012) Importance of myocyte-nonmyocyte interactions in cardiac development and disease. Circ Res 110(7):1023–1034CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stainier DY et al (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121(10):3141–3150PubMedGoogle Scholar
  16. 16.
    Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66CrossRefPubMedGoogle Scholar
  17. 17.
    Puri MC et al (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126(20):4569–4580PubMedGoogle Scholar
  18. 18.
    Pennisi DJ, Ballard VL, Mikawa T (2003) Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 228(2):161–172CrossRefPubMedGoogle Scholar
  19. 19.
    Manner J, Schlueter J, Brand T (2005) Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev Dyn 233(4):1454–1463CrossRefPubMedGoogle Scholar
  20. 20.
    Dettman RW et al (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193(2):169–181CrossRefPubMedGoogle Scholar
  21. 21.
    Gittenberger-de Groot AC et al (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82(10):1043–1052CrossRefPubMedGoogle Scholar
  22. 22.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Grego-Bessa J et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12(3):415–29CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee KF et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398CrossRefPubMedGoogle Scholar
  25. 25.
    Gassmann M et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378(6555):390–394CrossRefPubMedGoogle Scholar
  26. 26.
    Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378(6555):386–390CrossRefPubMedGoogle Scholar
  27. 27.
    Chen H et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yang J et al (2012) Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc Res 96(2):276–285CrossRefPubMedGoogle Scholar
  29. 29.
    Chen H et al (2013) Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140(9):1946–1957CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pashmforoush M et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386CrossRefPubMedGoogle Scholar
  31. 31.
    Shou W et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492CrossRefPubMedGoogle Scholar
  32. 32.
    Mysliwiec MR, Bresnick EH, Lee Y (2011) Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J Biol Chem 286(19):17193–17204CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3):215–266CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Solloway MJ, Harvey RP (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58(2):264–277CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou M et al (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4(2):201–207CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lavine KJ et al (2005) Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8(1):85–95CrossRefPubMedGoogle Scholar
  37. 37.
    Lu SY et al (2008) FGF-16 is required for embryonic heart development. Biochem Biophys Res Commun 373(2):270–274CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang Y et al (2010) Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev 24(16):1746–1757CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Merki E et al (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA 102(51):18455–18460CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lavine KJ et al (2006) Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev 20(12):1651–1666CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Branton H, Warren AE, Penney LS (2011) Left ventricular noncompaction and coronary artery fistula in an infant with deletion 22q11.2. Pediatr Cardiol 32(2):208–210CrossRefPubMedGoogle Scholar
  42. 42.
    Lauer RM et al (1964) Angiographic demonstration of intramyocardial sinusoids in pulmonary-valve atresia with intact ventricular septum and hypoplastic right ventricle. N Engl J Med 271:68–72CrossRefPubMedGoogle Scholar
  43. 43.
    Floria M, Tinica G, Grecu M (2014) Left ventricular non-compaction -challenges and controversies. Maedica (Buchar) 9(3):282–288Google Scholar
  44. 44.
    Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107(2):186–199CrossRefPubMedGoogle Scholar
  45. 45.
    Liebner S et al (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359–367CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hirschy A et al (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289(2):430–441CrossRefPubMedGoogle Scholar
  48. 48.
    Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387(6630):292–295CrossRefPubMedGoogle Scholar
  49. 49.
    Boutros M et al (1998) Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94(1):109–118CrossRefPubMedGoogle Scholar
  50. 50.
    Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132(20):4421–4436CrossRefPubMedGoogle Scholar
  51. 51.
    Phillips HM et al (2008) Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res 102(5):615–623CrossRefPubMedGoogle Scholar
  52. 52.
    Phillips HM et al (2007) Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization. Circ Res 101(2):137–145CrossRefPubMedGoogle Scholar
  53. 53.
    Murdoch JN et al (2003) Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12(2):87–98CrossRefPubMedGoogle Scholar
  54. 54.
    Li D et al (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138(2):303–315CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Azhar M et al (2003) Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 14(5):391–407CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sanford LP et al (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659–2670PubMedPubMedCentralGoogle Scholar
  57. 57.
    Gaussin V et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99(5):2878–2883CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang T et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444CrossRefPubMedGoogle Scholar
  59. 59.
    Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Investig Dermatol 118(2):211–215CrossRefPubMedGoogle Scholar
  60. 60.
    Lockhart M et al (2011) Extracellular matrix and heart development. Birth Defects Res A 91(6):535–550CrossRefGoogle Scholar
  61. 61.
    Stanton H et al (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 1812(12):1616–1629CrossRefPubMedGoogle Scholar
  62. 62.
    Camenisch TD et al (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Investig 106(3):349–360CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cooley MA et al (2012) Fibulin-1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation. Dev Dyn 241(2):303–314CrossRefPubMedGoogle Scholar
  64. 64.
    Hatano S et al (2012) Versican/PG-M is essential for ventricular septal formation subsequent to cardiac atrioventricular cushion development. Glycobiology 22(9):1268–1277CrossRefPubMedGoogle Scholar
  65. 65.
    Stankunas K et al (2008) Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev Cell 14(2):298–311CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kern CB et al (2010) Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol 29(4):304–316CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhou Z et al (2015) The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell 32(2):168–180CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lin W et al (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Investig 128(2):826–833CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Roohani N et al (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157PubMedPubMedCentralGoogle Scholar
  70. 70.
    Walsh CT et al (1994) Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102(Suppl 2):5–46CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    King JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94(2):679S-84SCrossRefPubMedGoogle Scholar
  72. 72.
    Andreini C et al (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201CrossRefPubMedGoogle Scholar
  73. 73.
    Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46CrossRefPubMedGoogle Scholar
  74. 74.
    Shils ME, Shike M (2006) Modern nutrition in health and disease. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  75. 75.
    Fukada T et al (2011) Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 16(7):1123–1134CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763(7):711–722CrossRefPubMedGoogle Scholar
  77. 77.
    King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130(5S Suppl):1360S–1366SGoogle Scholar
  78. 78.
    Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17(3):336CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176CrossRefPubMedGoogle Scholar
  80. 80.
    Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674CrossRefPubMedGoogle Scholar
  81. 81.
    Van Wouwe JP (1989) Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr 149(1):2–8CrossRefPubMedGoogle Scholar
  82. 82.
    Hambidge M (2000) Human zinc deficiency. J Nutr 130(5S Suppl):1344S–1349SGoogle Scholar
  83. 83.
    Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B 89(4):313–325CrossRefGoogle Scholar
  84. 84.
    Lopez V, Keen CL, Lanoue L (2008) Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model. Biol Trace Elem Res 122(3):238–255CrossRefPubMedGoogle Scholar
  85. 85.
    Pfeiffer CC, Braverman ER (1982) Zinc, the brain and behavior. Biol Psychiatry 17(4):513–532PubMedGoogle Scholar
  86. 86.
    Duffy JY et al (2004) Cardiac abnormalities induced by zinc deficiency are associated with alterations in the expression of genes regulated by the zinc-finger transcription factor GATA-4. Birth Defects Res B 71(2):102–109CrossRefGoogle Scholar
  87. 87.
    Reamon-Buettner SM, Borlak J (2005) GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart. J Med Genet 42(5):e32CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Molkentin JD et al (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11(8):1061–1072CrossRefPubMedGoogle Scholar
  89. 89.
    Kuo CT et al (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11(8):1048–1060CrossRefPubMedGoogle Scholar
  90. 90.
    Gajecka M, Mackay KL, Shaffer LG (2007) Monosomy 1p36 deletion syndrome. Am J Med Genet C 145C(4):346–356CrossRefGoogle Scholar
  91. 91.
    Christine KS, Conlon FL (2008) Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell 14(4):616–623CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Charpentier MS et al (2013) CASZ1 promotes vascular assembly and morphogenesis through the direct regulation of an EGFL7/RhoA-mediated pathway. Dev Cell 25(2):132–143CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Vacalla CM, Theil T (2002) Cst, a novel mouse gene related to Drosophila Castor, exhibits dynamic expression patterns during neurogenesis and heart development. Mech Dev 118(1–2):265–268CrossRefPubMedGoogle Scholar
  94. 94.
    Liu Z et al (2006) Molecular cloning and characterization of human Castor, a novel human gene upregulated during cell differentiation. Biochem Biophys Res Commun 344(3):834–844CrossRefPubMedGoogle Scholar
  95. 95.
    Liu Z et al (2014) Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 289(43):29801–29816CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dorr KM et al (2015) Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development 142(11):2037–2047CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kim JH et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743CrossRefPubMedGoogle Scholar
  98. 98.
    Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99(8):1515–1522CrossRefPubMedGoogle Scholar
  99. 99.
    Fukada T et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS ONE 3(11):e3642CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Chai J et al (2003) Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem 278(22):20327–20331CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Regeneron Pharmaceuticals, Inc.TarrytownUSA
  3. 3.Division of Cardiac Surgery, School of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations