Skip to main content
Log in

Survival to Stage II with Ventricular Dysfunction: Secondary Analysis of the Single Ventricle Reconstruction Trial

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Ventricular dysfunction affects survival in patients with single right ventricle (RV), and remains one of the primary indications for heart transplantation. Since it is challenging to predict the capacity of patients with ventricular dysfunction to proceed to the stage II procedure, we sought to identify factors that would be associated with death or heart transplantation without achieving stage II for single RV patients with ventricular dysfunction after Norwood procedure. The Single Ventricle Reconstruction (SVR) trial public-use database was used. Patients with a RV ejection fraction less than 44% or a RV fractional area of change less than 35% on the post-Norwood echocardiogram were included. Parametric risk hazard analysis was used to identify risk factors for death or transplantation without achieving stage II. Of 365 patients with ventricular function measurements on the post-Norwood echocardiogram, 123 (34%) patients had RV dysfunction. The transplantation-free survival was significantly lower for those with ventricular dysfunction compared to those with normal function (log rank Chi-square = 4.23, p = 0.04). Furthermore, having a Blalock–Taussig (BT) shunt, a large RV, a post-Norwood infectious complication, and a surgeon who performs five or less Norwood per year were independent risk factors for death or transplantation without achieving stage II. The predicted 6-month transplantation-free survival for patients with all four identified risk factors was 1% (70% CI 0–13%). Early heart transplantation referral might be considered for post-Norwood patients with BT shunt and RV dysfunction, especially if other high-risk features are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frommelt PC, Guey LT, Minich LL, Bhat M, Bradley TJ, Colan SD, Ensing G, Gorentz J, Heydarian H, John JB, Lai WW, Levine JC, Mahle WT, Miller SG, Ohye RG, Pearson GD, Shirali GS, Wong PC, Cohen MS, for the Pediatric Heart Network Investigators (2012) Does initial shunt type for the norwood procedure affect echocardiographic measures of cardiac size and function during infancy?: the single ventricle reconstruction trial. Circulation 125:2630–2638. https://doi.org/10.1161/CIRCULATIONAHA.111.072694

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilder TJ, McCrindle BW, Phillips AB, Blackstone EH, Rajeswaran J, Williams WG, DeCampli WM, Jacobs JP, Jacobs ML, Karamlou T, Kirshbom PM, Lofland GK, Ziemer G, Hickey EJ (2015) Survival and right ventricular performance for matched children after stage-1 Norwood: modified Blalock-Taussig shunt versus right-ventricle-to-pulmonary-artery conduit. J Thorac Cardiovasc Surg 150:1440–1452. https://doi.org/10.1016/J.JTCVS.2015.06.069

    Article  PubMed  Google Scholar 

  3. Jean-St-Michel E, Chetan D, Schwartz SM, Van Arsdell GS, Floh AA, Honjo O, Conway J (2016) Outcomes in patients with persistent ventricular dysfunction after stage I palliation for hypoplastic left heart syndrome. Pediatr Cardiol 37:239–247. https://doi.org/10.1007/s00246-015-1268-4

    Article  PubMed  Google Scholar 

  4. Chetan D, Kotani Y, Jacques F, Poynter JA, Benson LN, Lee K-J, Chaturvedi RR, Friedberg MK, Van Arsdell GS, Caldarone CA, Honjo O (2013) Surgical palliation strategy does not affect interstage ventricular dysfunction or atrioventricular valve regurgitation in children with hypoplastic left heart syndrome and variants. Circulation 128:S205–S212. https://doi.org/10.1161/CIRCULATIONAHA.112.000380

    Article  PubMed  Google Scholar 

  5. Tabbutt S, Ghanayem N, Ravishankar C, Sleeper LA, Cooper DS, Frank DU, Lu M, Pizarro C, Frommelt P, Goldberg CS, Graham EM, Krawczeski CD, Lai WW, Lewis A, Kirsh JA, Mahony L, Ohye RG, Simsic J, Lodge AJ, Spurrier E, Stylianou M, Laussen P (2012) Risk factors for hospital morbidity and mortality after the Norwood procedure: a report from the pediatric heart network single ventricle reconstruction trial. J Thorac Cardiovasc Surg 144:882–895. https://doi.org/10.1016/j.jtcvs.2012.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ghanayem NS, Allen KR, Tabbutt S, Atz AM, Clabby ML, Cooper DS, Eghtesady P, Frommelt PC, Gruber PJ, Hill KD, Kaltman JR, Laussen PC, Lewis AB, Lurito KJ, Minich LL, Ohye RG, Schonbeck JV, Schwartz SM, Singh RK, Goldberg CS, Pediatric Heart Network Investigators (2012) Interstage mortality after the Norwood procedure: results of the multicenter single ventricle reconstruction trial. J Thorac Cardiovasc Surg 144:896–906. https://doi.org/10.1016/j.jtcvs.2012.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  7. Newburger JW, Sleeper LA, Frommelt PC, Pearson GD, Mahle WT, Chen S, Dunbar-Masterson C, Mital S, Williams IA, Ghanayem NS, Goldberg CS, Jacobs JP, Krawczeski CD, Lewis AB, Pasquali SK, Pizarro C, Gruber PJ, Atz AM, Khaikin S, Gaynor JW, Ohye RG, Pediatric Heart Network Investigators (2014) Transplantation-free survival and interventions at 3 years in the single ventricle reconstruction trial. Circulation 129:2013–2020. https://doi.org/10.1161/CIRCULATIONAHA.113.006191

    Article  PubMed  PubMed Central  Google Scholar 

  8. Muthurangu V, Simpson JM, Razavi RS (2005) Spontaneous improvement of severe right ventricular dysfunction in the setting of hypoplasia of the left heart. Cardiol Young 15:75–78. https://doi.org/10.1017/S1047951105000156

    Article  PubMed  Google Scholar 

  9. O’Connor MJ, Elias MD, Cohen MS, Quartermain MD (2012) Outcomes of infants undergoing superior cavopulmonary connection in the presence of ventricular dysfunction. Pediatr Cardiol 33:547–553. https://doi.org/10.1007/s00246-011-0147

    Article  PubMed  Google Scholar 

  10. Kulkarni A, Neugebauer R, Lo Y, Gao Q, Lamour JM, Weinstein S, Hsu DT (2016) Outcomes and risk factors for listing for heart transplantation after the Norwood procedure: an analysis of the single ventricle reconstruction trial. J Heart Lung Transplant 35:306–311. https://doi.org/10.1016/j.healun.2015.10.033

    Article  PubMed  Google Scholar 

  11. Everitt MD, Boyle GJ, Schechtman KB, Zheng J, Bullock EA, Kaza AK, Dipchand AI, Naftel DC, Kirklin JK, Canter CE (2012) Early survival after heart transplant in young infants is lowest after failed single-ventricle palliation: a multi-institutional study. J Heart Lung Transplant 31:509–516. https://doi.org/10.1016/j.healun.2011.12.013

    Article  PubMed  Google Scholar 

  12. Ohye RG, Sleeper LA, Mahony L, Newburger JW, Pearson GD, Lu M, Goldberg CS, Tabbutt S, Frommelt PC, Ghanayem NS, Laussen PC, Rhodes JF, Lewis AB, Mital S, Ravishankar C, Williams IA, Dunbar-Masterson C, Atz AM, Colan S, Minich LL, Pizarro C, Kanter KR, Jaggers J, Jacobs JP, Krawczeski CD, Pike N, McCrindle BW, Virzi L, Gaynor JW (2010) Comparison of shunt types in the Norwood procedure for single-ventricle lesions. N Engl J Med 362:1980–1992. https://doi.org/10.1056/NEJMoa0912461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ohye RG, Gaynor JW, Ghanayem NS, Goldberg CS, Laussen PC, Frommelt PC, Newburger JW, Pearson GD, Tabbutt S, Wernovsky G, Wruck LM, Atz AM, Colan SD, Jaggers J, McCrindle BW, Prakash A, Puchalski MD, Sleeper LA, Stylianou MP, Mahony L (2008) Design and rationale of a randomized trial comparing the Blalock–Taussig and right ventricle–pulmonary artery shunts in the Norwood procedure. J Thorac Cardiovasc Surg 136:968–975. https://doi.org/10.1016/j.jtcvs.2008.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pavlicek M, Wahl A, Rutz T, de Marchi SF, Hille R, Wustmann K, Steck H, Eigenmann C, Schwerzmann M, Seiler C (2011) Right ventricular systolic function assessment: rank of echocardiographic methods vs. cardiac magnetic resonance imaging. Eur J Echocardiogr 12:871–880. https://doi.org/10.1093/ejechocard/jer

    Article  PubMed  Google Scholar 

  15. Ling LF, Marwick TH (2012) Echocardiographic assessment of right ventricular function. JCMG 5:747–753. https://doi.org/10.1016/j.jcmq.2011.08.026

    Article  Google Scholar 

  16. Rudski LG, Lai WW, Afilalo J, Hua L, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the american society of echocardiography. J Am Soc Echocardiogr 23:685–713. https://doi.org/10.1016/j.echo.2010.05.010

    Article  PubMed  Google Scholar 

  17. Blackstone EH, Naftel DC, Turner JRME. (1986) The decomposition of time-varying hazard into phases, each incorporating a separate stream of concomitant information. J Am Stat Assoc 81:615–624

    Article  Google Scholar 

  18. Tweddell JS, Sleeper LA, Ohye RG, Williams IA, Mahony L, Pizarro C, Pemberton VL, Frommelt PC, Bradley SM, Cnota JF, Hirsch J, Kirshbom PM, Li JS, Pike N, Puchalski M, Ravishankar C, Jacobs JP, Laussen PC, McCrindle BW (2012) Intermediate-term mortality and cardiac transplantation in infants with single-ventricle lesions: Risk factors and their interaction with shunt type. J Thorac Cardiovasc Surg 144:152–159. https://doi.org/10.1016/j.jtcvs.2012.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubin DB (2004) Multiple imputation for nonresponse in surveys. Wiley, Hoboken

    Google Scholar 

  20. Austin PC, Tu JV (2004) Bootstrap methods for developing predictive models. Am Stat 58:131–137

    Article  Google Scholar 

  21. Carlo WF, West SC, McCulloch M, Naftel DC, Pruitt E, Kirklin JK, Hubbard M, Molina KM, Gajarski R (2016) Impact of initial Norwood shunt type on young hypoplastic left heart syndrome patients listed for heart transplant: a multi-institutional study. J Heart Lung Transplant 35:301–305. https://doi.org/10.1016/j.healun.2015.10.032

    Article  PubMed  Google Scholar 

  22. Schwartz SM, Lu M, Ohye RG, Hill KD, Atz AM, Naim MY, Williams IA, Goldberg CS, Lewis A, Pigula F, Manning P, Pizarro C, Chai P, McCandless R, Dunbar-Masterson C, Kaltman JR, Kanter K, Sleeper LA, Schonbeck JV, Ghanayem N, Pediatric Heart Network Investigators (2014) Risk factors for prolonged length of stay after the stage 2 procedure in the single-ventricle reconstruction trial. J Thorac Cardiovasc Surg 147:1791–1798. https://doi.org/10.1016/j.jtcvs.2013.07.063

    Article  PubMed  Google Scholar 

  23. Bradley SM, Simsic JM, McQuinn TC, Habib DM, Shirali GS, Atz AM (2004) Hemodynamic status after the Norwood procedure: a comparison of right ventricle-to-pulmonary artery connection versus modified Blalock-Taussig shunt. Ann Thorac Surg 78:933–941. https://doi.org/10.1016/j.athoracsur.2004.04.016

    Article  PubMed  Google Scholar 

  24. Ghanayem NS, Jaquiss RDB, Cava JR, Frommelt PC, Mussatto KA, Hoffman GM, Tweddell JS (2006) Right ventricle-to-pulmonary artery conduit versus Blalock-Taussig shunt: a hemodynamic comparison. Ann Thorac Surg 82:1603–1610. https://doi.org/10.1016/j.athoracsur.2006.05.103

    Article  PubMed  Google Scholar 

  25. DeCampli WM, Tsai FW, Argueta-Morales IR, Smith C, Munro HM (2013) The effect of epinephrine on coronary flow in the setting of a systemic-to-pulmonary artery shunt. World J Pediatr Congenit Heart Surg 4:373–379. https://doi.org/10.1177/2150135113490760

    Article  PubMed  Google Scholar 

  26. Driscol TE, Moir TW, Ecksteine RW (1964) Autoregulation of coronary blood flow: effect of interarterial pressure gradients. Circ Res 15:103–111

    Article  PubMed  CAS  Google Scholar 

  27. Donnelly JP, Raffel DM, Shulkin BL, Corbett JR, Bove EL, Mosca RS, Kulik TJ (1998) Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography. J Thorac Cardiovasc Surg 115:103–110

    Article  PubMed  CAS  Google Scholar 

  28. Baird RJ, Adiseshiah M (1976) The response of diastolic myocardial tissue pressure and regional coronary blood flow to increased preload from blood, colloid, crystalloid. Surgery 79:644–651

    PubMed  CAS  Google Scholar 

  29. Honjo O, Atlin CR, Mertens L, Al-Radi OO, Redington AN, Caldarone CA, VanArsdell GS (2011) Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention. J Thorac Cardiovasc Surg 142(2):326–335. https://doi.org/10.1016/j.jtcvs.2010.11.060b

    Article  PubMed  Google Scholar 

  30. Hsu DT, Zak V, Mahony L, Sleeper LA, Sleeper LA, Atz AM, Levine JC, Barker PC, Ravishankar C, McCrindle BW, Williams RV, Altmann K, Ghanayem NS, Margossian R, Chung WK, Border WL, Pearson GD, Stylianou MP, Mital S, for the Pediatric Heart Network Investigators (2010) Enalapril in infants with single ventricle: results of a Multicenter Randomized Trial. Circulation 122:333–340. https://doi.org/10.1161/CIRCULATIONAHA.109.927988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L, Ross RD, Pahl E, Blume ED, Dodd DA, Rosenthal DN, Burr J, LaSalle B, Holubkov R, Lukas MA, Tani LY, Pediatric Carvedilol Study Group (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298:1171–1179. https://doi.org/10.1001/jama.298.10.1171

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Jean-St-Michel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors since we used the dataset provided by the Pediatric Heart Network which has been completely de-identified, and is now publically accessible via the Pediatric Heart Network website.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1

Distribution of time in days from the Norwood procedure to the post-Norwood echocardiogram in days. This graph represents the number of days between the Norwood procedure and the post-Norwood echocardiogram for each subject within the ventricular dysfunction cohort (TIFF 108 KB)

Supplement Fig. 2

Time to death, heart transplant, or stage II. The time to death, heart transplant or stage II was defined as the time from the Norwood procedure to the post-Norwood echocardiogram plus the time from post-Norwood echocardiogram to the event. This graph represent the observation period included in our analysis after adjusting for left censoring (TIFF 22 KB)

Supplementary material 3 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean-St-Michel, E., Meza, J.M., Maguire, J. et al. Survival to Stage II with Ventricular Dysfunction: Secondary Analysis of the Single Ventricle Reconstruction Trial. Pediatr Cardiol 39, 955–966 (2018). https://doi.org/10.1007/s00246-018-1845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-1845-4

Keywords

Navigation